Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Process Development for Use of AERAC

1991-11-01
912650
Two Automated Electromagnetic Riveting Assembly Cells (AERAC) were manufactured for Textron Aerostructures by Electroimpact, Inc. The AERAC installs the final rivets in the A330/A340 upper wing panel in the floor assembly jig. At Textron for each wing the corresponding floor assembly jigs for each wing are lined up end to end. An operating procedure in which the formboards are removed in bays allows efficient operation of an in the jig riveter such as the AERAC. Specialized machine codes developed for the AERAC allows quick fully programmed stringer to stringer jumps of the stringer side offset tooling. The AERAC is programmed entirely from a CATIA drawing of the part. Of the 5 axes of rivet data available only two are retained for use by the AERAC.
Technical Paper

Offset Anvil for HH500

2012-09-10
2012-01-1871
The handheld (HH) electromagnetic riveter (EMR) has proven to be an effective means of installing up to 7/16\mi diameter rivets in aircraft components. These devices are currently installing rivets on Boeing and Airbus planes all over the world. They are also very popular in China and Japan. However, there have always been difficulties with stringer access. A new version of lightweight driver with interchangeable offset tooling was created to alleviate this problem. In addition, a disposable plastic wedge has been incorporated at the base of the offset ram to prevent stringer damage during the recoil.
Technical Paper

Narrow Fixture Improves One-Up Panel Assembly

2022-03-08
2022-01-0015
The use of a narrow profile posts or Skinny Fixture increases build speed and flexibility while improving quality of aluminum aircraft panels fastened in one-up assembly cells. Aluminum aircraft panels are made up of an outer skin and a series of stringers. The components must be held in accurate relative positions while preliminary fasteners are installed. By using narrow fixture posts in conjunction with deep drop stringer side machine tools, the fastening machine can apply fasteners at tighter initial spacing. The spacing is gained by providing clearances that allows the centerline of the fastening system to work closer to the post than previously achieved with deep fixture posts and short stringer side tooling. At one time the standard process was to hold the parts in manual tack cells and after tacking the panels are moved to a separate automated fastening cell. One-up assembly fixtures improve the process by reducing manual processes while minimizing component handling.
Technical Paper

Automatic Stringer Drilling System

1994-10-01
941832
Northrop Corporation manufactures body panels for the Boeing 747 aircraft. There are 1259 different stringer configurations used on the three 747 models with an average of 839 stringers per ship set. Until recently, all drain holes and skin coordination pilot holes were drilled manually using plastic application template tools (PATTS). Inventory costs were high and manual drilling errors led to excessive scrap and rework rates. Northrop engineers recognized that automating the stringer drilling process would produce higher quality parts at a lower cost. Northrop worked with Electroimpact, Inc. to develop the Automatic Stringer Drilling System (ASDS). The ASDS automatically clamps and drills all straight and contoured stringers used on the 747. Stringers are mounted on a rotating platform that provides +/- 90° of motion. Two servo-servo drills are mounted on a cantilevered arm with 25 feet of X-axis travel.
Technical Paper

Implementation of the HH550 Electromagnetic Riveter and Multi-Axis Manlift for Wing Panel Pickup

1996-10-01
961883
A new wing panel riveting cell capable of replacing tack fasteners and performing small repair jobs has been developed. Using two mobile scissor lift platforms with electromagnetic riveters mounted on each, the operators can access every portion of the wing panel without the use of ladders or platforms. This method minimizes fatigue, allows workers to carry all tools and supplies with them, meets current safety standards and minimizes coldworking of the components.
Technical Paper

Sideways Collar Anvil For Use on A340-600

2005-10-03
2005-01-3300
A new method of installing LGP collars onto titanium lock bolts has been brought into production in the Airbus wing manufacturing facility in Broughton, Wales. The feed system involves transporting the collar down a rectangular cross-sectioned hose, through a rectangular pathway in the machine clamp anvil to the swage die without the use of fingers or grippers. This method allows the reliable feeding the collars without needing to adjust the position of feed fingers or grippers relative to the tool centerline. Also, more than one fastener diameter can be fed through one anvil geometry, requiring only a die change to switch between certain fastener diameters. In our application, offset and straight stringer geometries are accommodated by the same anvil.
Technical Paper

Evaluation of the EMR for Swaging Collars on Advanced Composite Laminates

2005-10-03
2005-01-3299
The Boeing 787 Dreamliner will be the most fuel-efficient airliner in the world when it enters service in 2008. To help achieve this, Boeing will utilize state-of-the-art carbon fiber for primary structures. Advanced manufacturing techniques and processes will be used in the assembly of large composite structures. Electroimpact has proposed a system utilizing the low recoil Low Voltage Electromagnetic Riveter (LVER) to drill and install bolts. A test program was initiated between Boeing Materials Process and Engineering (MP&E) and Electroimpact to validate the LVER process for swaging titanium collars on titanium pins in composite material. This paper details the results of these tests.
Technical Paper

Self Contained Portable AFDE With On-Board CNC, Custom Operator Interface and RF Network

2000-09-19
2000-01-3011
Automated Floor Drilling Equipment (AFDE) have been used at Boeing for drilling floor panel, galley, lavatory and other holes in Boeing planes. New controller and drill spindle designs made it possible to redesign the AFDE as a self-contained unit with on-board CNC, custom operator interface, RF network and more compact drill spindles for increased robustness and versatility.
Technical Paper

Flexibility in Fastener Feeding

1999-10-06
1999-01-3450
This paper details the Electroimpact Cartridge Feed Auto Select (CFAS) System, the Electroimpact Cartridge Filling Station (CFS) and the implementation of these systems on today&’s factory floors. Problems inherent in handling tens of thousands of fasteners per workpiece have traditionally been an Achilles Heel to many aerospace-manufacturing cells. The CFAS system moves the job of sorting through bulk fasteners to the stand alone offline CFS. With the bulk feeding process offline, problems such as contaminated fastener lots get taken care of before they ever get to a fastening machine. Modular briefcase sized coiled tube magazines store and distribute fasteners to automated riveting and bolting equipment via the CFAS rack. Cartridges captively hold 500 to 3,000 fasteners from 1/8” to 3/8” diameters and are length independent which allow a small number of cartridges to work with a large array of overall fasteners.
X