Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Design Challenges in the Development of a Large Vehicle Inertial Measurement System

2014-04-01
2014-01-0096
The (Vehicle Inertia Parameter Evaluation Rig) VIPER II is a full vehicle mass and inertia parameter measurement machine. The VIPER II expands upon the capabilities of its predecessor and is capable of measuring vehicles with a mass of up to 45,360 kg (100,000 lb), an increase in capacity of 18,100 kg (40,000 lb). The VIPER II also exceeds its predecessor in both the length and width of vehicles it can measure. The VIPER II's maximum vehicle width is 381 cm (150 in) an increase of 76 cm (30 in) and maximum distance from the vehicle CG to the outer most axle is 648 cm (255 in) an additional 152 cm (60 in) The VIPER II is capable of performing measurements including vehicle CG height, pitch, roll, and yaw moments of inertia and the roll/yaw cross product of inertia. While being able to measure both heavier and larger vehicles, the VIPER II is designed to maintain a maximum error of 3% for all inertia measurements and 1% for CG height.
Journal Article

The Design of a Suspension Parameter Identification Device and Evaluation Rig (SPIDER) for Military Vehicles

2013-04-08
2013-01-0696
This paper describes the mechanical design of a Suspension Parameter Identification Device and Evaluation Rig (SPIDER) for wheeled military vehicles. This is a facility used to measure quasi-static suspension and steering system properties as well as tire vertical static stiffness. The machine operates by holding the vehicle body nominally fixed while hydraulic cylinders move an “axle frame” in bounce or roll under each axle being tested. The axle frame holds wheel pads (representing the ground plane) for each wheel. Specific design considerations are presented on the wheel pads and the measurement system used to measure wheel center motion. The constraints on the axle frames are in the form of a simple mechanism that allows roll and bounce motion while constraining all other motions. An overview of the design is presented along with typical results.
Technical Paper

Effect of Lateral Tire Flexibility on the Steering System Dynamic Behavior

1991-02-01
910239
The purpose of this paper is to investigate the influence of tire lateral flexibility on the steering system dynamic behavior. Individually, the steering models and the lateral flexible models have been investigated for a long time. However, the combination of both hasn't yet drawn much attention. The inclusion of the lateral (rigid) tire model has shown to be of great importance. This study attempts to scrutinize the influence of a more practical tire model on the steering dynamic performance. Included in the study, Transient response as well as frequency response are illustrated by tables and figures.
Technical Paper

Lateral Stiffness, Cornering Stiffness and Relaxation Length of the Pneumatic Tire

1990-02-01
900129
This paper describes an experimental program of tire research used to quantify the concept of the “relaxation length” of the fully rolling, steered tire. Two methods of developing lateral force are compared for the general car with the result that a first-order differential equation is obtained from which the change is lateral force with time, or distance, as the steer angle variation is computed.
Technical Paper

Enhancement of Vehicle Dynamics Model Using Genetic Algorithm and Estimation Theory

2003-03-03
2003-01-1281
A determination of the vehicle states and tire forces is critical to the stability of vehicle dynamic behavior and to designing automotive control systems. Researchers have studied estimation methods for the vehicle state vectors and tire forces. However, the accuracy of the estimation methods is closely related to the employed model. In this paper, tire lag dynamics is introduced in the model. Also application of estimation methods in order to improve the model accuracy is presented. The model is developed by using the global searching algorithm, a Genetic Algorithm, so that the model can be used in the nonlinear range. The extended Kalman filter and sliding mode observer theory are applied to estimate the vehicle state vectors and tire forces. The obtained results are compared with measurements and the outputs from the ADAMS full vehicle model. [15]
Technical Paper

Empirical Models for Commercial Vehicle Brake Torque from Experimental Data

2003-03-03
2003-01-1325
This paper introduces a new series of empirical mathematical models developed to characterize brake torque generation of pneumatically actuated Class-8 vehicle brakes. The brake torque models, presented as functions of brake chamber pressure and application speed, accurately simulate steer axle, drive axle, and trailer tandem brakes, as well as air disc brakes (ADB). The contemporary data that support this research were collected using an industry standard inertia-type brake dynamometer, routinely used for verification of FMVSS 121 commercial vehicle brake standards.
Technical Paper

Modeling of Dynamic Characteristics of Tire Lateral and Longitudinal Force Responses to Dynamic Inputs

1995-02-01
950314
This paper presents the development of a tire model for use in the simulation of vehicle dynamics. The model was developed to predict tire lateral and longitudinal force responses to dynamic inputs. In this new tire model, the contact patch of a tire is lumped into a number of elements to study the dynamic behavior of the displacement of the tire contact patch in the lateral and longitudinal directions. For each displacement, a differential equation governing the dynamic behavior of the displacement to the dynamic inputs is derived. Based on the differential equations for the lateral and longitudinal displacements, difference equations are derived for the purpose of simulating tire output responses. Since system parameters, such as mass, damping and stiffness, in the difference equations are unknown, estimation of system parameters is performed using the differential equations and experimental data measured for this research.
Technical Paper

The Application of Pulse Input Techniques to the Study of Tire Lateral Force and Self-Aligning Moment Dynamics in the Frequency Domain

1995-02-01
950317
This paper presents the application of pulse input techniques to study tire dynamics in the frequency domain. Many tire researchers analyze tire dynamics by means of studying the frequency response of tire output responses to sinusoidal frequency inputs, for example, the frequency response of tire lateral force to sinusoidal slip angle input. To replace expensive and time-consuming sinusoidal frequency tests, pulse techniques are applied to obtain frequency responses. A series of slip angle pulse input tests in various conditions (several normal forces, speeds and magnitudes of slip angle inputs) are executed on a pneumatic tire. The tire output responses to the slip angle pulse inputs are transformed into the frequency domain using discrete Fourier transform. Several rules of Fourier transform related to the study of tire dynamics are detailed. The frequency responses obtained by pulse techniques are validated by comparison with the results from sinusoidal frequency tests.
Technical Paper

Advancements in Tire Modeling Through Implementation of Load and Speed Dependent Coefficients

2005-11-01
2005-01-3543
An existing tire model was investigated for additional normal load-dependent characteristics to improve the large truck simulations developed by the National Highway Traffic Safety Administration (NHTSA) for the National Advanced Driving Simulator (NADS). Of the existing tire model coefficients, plysteer, lateral friction decay, aligning torque stiffness and normalized longitudinal stiffness were investigated. The findings of the investigation led to improvements in the tire model. The improved model was then applied to TruckSim to compare with the TruckSim table lookup tire model and test data. Additionally, speed-dependent properties for the NADS tire model were investigated (using data from a light truck tire).
Technical Paper

An Experimental Determination of the Strain History, Deflection Behavior, and Material Properties of a Composite material Rooftop for a Multipurpose Vehicle Part III

1989-02-01
890549
Composite material roof structures for multipurpose vehicles are comprised of a composite shell molded without metal frames as in most automobile rooftops. This paper experimentally analyzes the roof structure performance for a static uniformly distributed load over the roof surface and examines the tensile properties, effects of high temperatures and sound absorption characteristics of the random, chopped glass fiber reinforced epoxy resin material. The roof performance includes the load-strain history and the load-deflection behavior of the structure.
Technical Paper

An Overview of the Evolution of Computer Assisted Motor Vehicle Accident Reconstruction

1987-10-01
871991
This paper presents an overview of the evolution of computer simulations in vehicle collision and occupant kinematic reconstructions. The basic principles behind these simulations, the origin of these programs and the evolution of these programs from a basic analytical mathematical model to a sophisticated computer program are discussed. In addition, a brief computer development history is discussed to demonstrate how the evolution of computer assisted vehicle accident reconstruction becomes feasible for a reconstructionist. Possible future research in computer reconstruction is also discussed.
Technical Paper

A Comparison Study of Skid and Yaw Marks

1989-02-01
890635
The discernment of whether a tire mark on a roadway is the result of a skidding tire or is the result of the rotation of the vehicle with unlocked wheels is important in vehicular accident reconstruction analysis. Resolution of the tire marks left by a vehicle after skidding and/or yawing on dry asphalt were experimentally studied for their similarities and differences under controlled test conditions. This paper analyses the results of this study and shows pictorially the differences for use by the accident reconstructionist. Analytical discussion are also presented that illustrate speed determination as estimated from yaw markings on the roadway.
X