Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Effect of Load and Other Parameters on Instantaneous Friction Torque in Reciprocating Engines

1991-02-01
910752
The effect of many operating parameters on the instantaneous frictional (IFT) torque was determined experimentally in a single cylinder diesel engine. The method used was the (P - ω)method developed earlier at Wayne State University. The operating parameters were load, lubricating oil grade, oil, temperature and engine speed. Also IFT was determined under simulated motoring conditions, commonly used in engine friction measurements. The results showed that the motoring frictional torque does not represent that under firing conditions even under no load. The error reached 31.4% at full load. The integrated frictional torque over the whole cycle and the average frictional torque were determined. A comparison of the average frictional torque under load was compared with the average motoring torque.
Technical Paper

Nato Durability Test of an Adiabatic Truck Engine

1990-02-01
900621
A previous paper (1)* described the performance improvements which can be obtained by using an “adiabatic” (uncooled) engine for military trucks. The fuel economy improved 16% to 37% (depending upon the duty cycle) and was documented by dynamometer testing and vehicle testing and affirmed by vehicle simulation. The purpose of this paper is to document a NATO cycle 400 hour durability test which was performed on the same model adiabatic engine. The test results showed that the engine has excellent durability, low lubricating oil consumption and minimal deposits.
Technical Paper

Performance Assessment of US. Army Truck with Adiabatic Diesel Engine

1989-02-01
890142
An investigation into the fuel economy of a U.S. Army M813 5-ton truck with an “adiabatic” (uncooled) 14 liter (855 in3) diesel engine was made with three different driving schedules. The results were used to verify a newly written vehicle simulation. This simulation was used to compare the fuel economy of an uncooled turbocharged engine, a water cooled turbocharged engine, and a water cooled naturally aspirated engine in the same vehicle. Results indicate that, depending on the duty cycle a 16% to 37% improvement in fuel economy (depending on the duty cycle) can be achieved with an uncooled engine in this vehicle.
Technical Paper

Integration and Use of Diesel Engine, Driveline and Vehicle Dynamics Models for Heavy Duty Truck Simulation

1999-03-01
1999-01-0970
An integrated vehicle system simulation has been developed to take advantage of advances in physical process and component models, flexibility of graphical programming environments (such as MATLAB-SIMULINK), and ever increasing capabilities of engineering workstations. A comprehensive, transient model of the multi-cylinder engine is linked with models of the torque converter, transmission, transfer case and differentials. The engine model is based on linking the appropriate number of single-cylinder modules, with the latter being thermodynamic models of the in-cylinder processes with built-in physical sub-models and transient capabilities to ensure high fidelity predictions. Either point mass or multi-body vehicle dynamics models can be coupled with the powertrain module to produce the ground vehicle simulation.
X