Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Video

Codes and Standards – Global Harmonization

2011-11-18
Career development is no longer something you focus on in your twenties and are set for life, it is ongoing and constant. New technologies, globalization and the world-wide competition for jobs demand that we continue to grow our skills and knowledge throughout our life. This session will provide you with tools to help you meet this demand as an engineering professional. Participants will create a personal mission statement and set career goals, identify the best way to research new opportunities and build their network while also crafting a personal brand with consistent messaging. Organizer Martha Schanno, SAE International Panelist Caryn Mateer, Transformational Leaders Intl. Kathleen Riley, Transformational Leaders Intl.
Journal Article

Control Analysis under Different Driving Conditions for Peugeot 3008 Hybrid 4

2014-04-01
2014-01-1818
This paper includes analysis results for the control strategy of the Peugeot 3008 Hybrid4, a diesel-electric hybrid vehicle, under different thermal conditions. The analysis was based on testing results obtained under the different thermal conditions in the Advanced Powertrain Research Facility (APRF) at Argonne National Laboratory (ANL). The objectives were to determine the principal concepts of the control strategy for the vehicle at a supervisory level, and to understand the overall system behavior based on the concepts. Control principles for complex systems are generally designed to maximize the performance, and it is a serious challenge to determine these principles without detailed information about the systems. By analyzing the test results obtained in various driving conditions with the Peugeot 3008 Hybrid4, we tried to figure out the supervisory control strategy.
Journal Article

Analyzing the Energy Consumption Variation during Chassis Dynamometer Testing of Conventional, Hybrid Electric, and Battery Electric Vehicles

2014-04-01
2014-01-1805
Production vehicles are commonly characterized and compared using fuel consumption (FC) and electric energy consumption (EC) metrics. Chassis dynamometer testing is a tool used to establish these metrics, and to benchmark the effectiveness of a vehicle's powertrain under numerous testing conditions and environments. Whether the vehicle is undergoing EPA Five-Cycle Fuel Economy (FE), component lifecycle, thermal, or benchmark testing, it is important to identify the vehicle and testing based variations of energy consumption results from these tests to establish the accuracy of the test's results. Traditionally, the uncertainty in vehicle test results is communicated using the variation. With the increasing complexity of vehicle powertrain technology and operation, a fixed energy consumption variation may no longer be a correct assumption.
Journal Article

Real-World Thermal Effects on Wheel Assembly Efficiency of Conventional and Electric Vehicles

2016-04-05
2016-01-0236
It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
Journal Article

PHEV Energy Management Strategies at Cold Temperatures with Battery Temperature Rise and Engine Efficiency Improvement Considerations

2011-04-12
2011-01-0872
Limited battery power and poor engine efficiency at cold temperature results in low plug in hybrid vehicle (PHEV) fuel economy and high emissions. Quick rise of battery temperature is not only important to mitigate lithium plating and thus preserve battery life, but also to increase the battery power limits so as to fully achieve fuel economy savings expected from a PHEV. Likewise, it is also important to raise the engine temperature so as to improve engine efficiency (therefore vehicle fuel economy) and to reduce emissions. One method of increasing the temperature of either component is to maximize their usage at cold temperatures thus increasing cumulative heat generating losses. Since both components supply energy to meet road load demand, maximizing the usage of one component would necessarily mean low usage and slow temperature rise of the other component. Thus, a natural trade-off exists between battery and engine warm-up.
Journal Article

Considerations in Estimating Battery Energy for Hybrid and Electric Vehicles

2012-04-16
2012-01-0660
As batteries become a major component of numerous advanced vehicles, significant efforts have been allocated towards characterizing and estimating battery energy capability over the lifetime of a vehicle. Currently, battery State of Charge (SOC) is one of the primary values used for this characterization; however SOC usage has several issues when implemented in Electric Vehicle (EV), Hybrid Electric Vehicle (HEV), and Plug-In Hybrid Electric Vehicle (PHEV) systems. One of the main issues with reporting battery SOC as a characterization of battery energy capability is that it only gives a percentage of the energy available to the operator. SOC does not accurately represent the true capability or capacity of the battery, and thus fails to account for the impact to capability with respect to battery size, age, and recent operational history.
Journal Article

Quantifying Uncertainty in Vehicle Simulation Studies

2012-04-16
2012-01-0506
The design of vehicles, particularly hybrid and other advanced technology vehicles, is typically complex and benefits from systems engineering processes. Vehicle modeling and simulation have become increasingly important system design tools to improve the accuracy, repeatability, and flexibility of the design process. In developing vehicle computational models and simulation, there is an inevitable compromise between the level of detail and the development/computational cost. The tradeoff is specific to the requirements of each vehicle design effort. The assumptions and detail limitations used for vehicle simulations lead to a varying degree of result uncertainty for each design effort. This paper provides a literature review to investigate the state of the art vehicle simulation methods, and quantifies the uncertainty associated with components that are commonly allocated uncertainty.
Journal Article

Analysis of Input Power, Energy Availability, and Efficiency during Deceleration for X-EV Vehicles

2013-04-08
2013-01-1473
The recovery of braking energy through regenerative braking is a key enabler for the improved efficiency of Hybrid Electric Vehicles, Plug-in Hybrid Electric, and Battery Electric Vehicles (HEV, PHEV, BEV). However, this energy is often treated in a simplified fashion, frequently using an overall regeneration efficiency term, ξrg [1], which is then applied to the total available braking energy of a given drive-cycle. In addition to the ability to recapture braking energy typically lost during vehicle deceleration, hybrid and plug-in hybrid vehicles also allow for reduced or zero engine fueling during vehicle decelerations. While regenerative braking is often discussed as an enabler for improved fuel economy, reduced fueling is also an important component of a hybrid vehicle's ability to improve overall fuel economy.
Technical Paper

Simulation-Based Engine Calibration: Tools, Techniques, and Applications

2004-03-08
2004-01-1264
Calibration of engine management systems requires considerable engineering resources during the development of modern engines. Traditional calibration methods use a combination of engine dynamometer and vehicle testing, but pressure to reduce powertrain development cost and time is driving development of more advanced calibration techniques. In addition, future engines will feature new technology, such as variable valve actuation, that is necessary to improve fuel economy, performance, and emissions. This introduces a greater level of system complexity and greatly increases test requirements to achieve successful calibrations. To address these problems, new simulation tools and procedures have been developed within Delphi to rapidly generate optimized calibration maps. The objective of the work is to reduce calibration effort while fully realizing the potential benefit from advanced engine technology.
Technical Paper

Model Validation of the Honda Accord Plug-In

2016-04-05
2016-01-1151
This paper presents the validation of an entire vehicle model of the Honda Accord Plug-in Hybrid Electric Vehicle (PHEV), which has a new powertrain system that can be driven in both series and parallel hybrid drive using a clutch, including thermal aspects. The Accord PHEV is a series-parallel PHEV with about 21 km of all-electric range and no multi-speed gearbox. Vehicle testing was performed at Argonne’s Advanced Powertrain Research Facility on a chassis dynamometer set in a thermal chamber. First, components (engine, battery, motors and wheels) were modeled using the test data and publicly available assumptions. This includes calibration of the thermal aspects, such as engine efficiency as a function of coolant temperature. In the second phase, the vehicle-level control strategy, especially the energy management, was analyzed in normal conditions in both charge-depleting and charge-sustaining modes.
Technical Paper

Investigation of Vehicle Speed Prediction from Neural Network Fit of Real World Driving Data for Improved Engine On/Off Control of the EcoCAR3 Hybrid Camaro

2017-03-28
2017-01-1262
The EcoCAR3 competition challenges student teams to redesign a 2016 Chevrolet Camaro to reduce environmental impacts and increase energy efficiency while maintaining performance and safety that consumers expect from a Camaro. Energy management of the new hybrid powertrain is an integral component of the overall efficiency of the car and is a prime focus of Colorado State University’s (CSU) Vehicle Innovation Team. Previous research has shown that error-less predictions about future driving characteristics can be used to more efficiently manage hybrid powertrains. In this study, a novel, real-world implementable energy management strategy is investigated for use in the EcoCAR3 Hybrid Camaro. This strategy uses a Nonlinear Autoregressive Artificial Neural Network with Exogenous inputs (NARX Artificial Neural Network) trained with real-world driving data from a selected drive cycle to predict future vehicle speeds along that drive cycle.
Technical Paper

Vehicle Electrification in Chile: A Life Cycle Assessment and Techno-Economic Analysis Using Data Generated by Autonomie Vehicle Modeling Software

2018-04-03
2018-01-0660
The environmental implications of converting vehicles powered by Internal Combustion Engines (ICE) to battery powered and hybrid battery/ICE powered are evaluated for the case of Chile, one of the worldwide leaders in the production of lithium (Li) required for manufacturing of Li-ion batteries. The economic and environmental metrics were evaluated by techno-economic analysis (TEA) and Life Cycle Assessment (LCA) tools - SuperPro Designer and Gabi®/GREET® models. The system boundary includes both the renewable and nonrenewable energy sources available in Chile and well-to-pump energy consumptions and GHG emissions due to Li mining and Li-ion battery manufacturing. All the major input data required for TEA and LCA were generated using Autonomie vehicle modeling software. This study compares economic and environmental indicators of three vehicle models for the case of Chile including compact, mid-size, and a light duty truck.
Technical Paper

Design of a Fuel Cell Plug-in Hybrid Electric Vehicle in a Range Extending Configuration by Colorado State University for the EcoCAR2 Competition

2012-09-10
2012-01-1765
EcoCAR2 is a three year project in which a 2013 Chevrolet Malibu will be redesigned to reduce emissions and be more energy efficient without sacrificing performance, safety, or consumer appeal. The competition includes 15 universities across North America and is headline sponsored by General Motors and the U.S. Department of Energy. Extensive modeling work guided the Colorado State University (CSU) Vehicle Innovation Team (VIT) to choose an all-electric vehicle architecture with a range extending hydrogen fuel cell. The team has followed the EcoCAR2 vehicle design process (VDP) in the development of the powertrain, energy storage, controls, and auxiliary systems. Details on the design process and results for these subsystems and a discussion of the integration challenges are presented.
Technical Paper

Performance Evaluation of an Autonomous Vehicle Using Resilience Engineering

2022-03-29
2022-01-0067
Standard operation of autonomous vehicles on public roads results in significant exposure to high levels of risk. There is a significant need to develop metrics that evaluate safety of an automated system without reliance on the rate of vehicle accidents and fatalities compared to the number of miles driven; a proactive rather than a reactive metric is needed. Resilience engineering is a new paradigm for safety management that focuses on evaluating complex systems and their interaction with the environment. This paper presents the overall methodology of resilience engineering and the resilience assessment grid (RAG) as an evaluation tool to measure autonomous systems' resilience. This assessment tool was used to evaluate the ability to respond to the system. A Pure Pursuit controller was developed and utilized as the path tracking control algorithm, and the Carla simulator was used to implement the algorithm and develop the testing environment for this methodology.
Technical Paper

Quantitative Resilience Assessment of GPS, IMU, and LiDAR Sensor Fusion for Vehicle Localization Using Resilience Engineering Theory

2023-04-11
2023-01-0576
Practical applications of recently developed sensor fusion algorithms perform poorly in the real world due to a lack of proper evaluation during development. Existing evaluation metrics do not properly address a wide variety of testing scenarios. This issue can be addressed using proactive performance measurements such as the tools of resilience engineering theory rather than reactive performance measurements such as root mean square error. Resilience engineering is an established discipline for evaluating proactive performance on complex socio-technical systems which has been underutilized for automated vehicle development and evaluation. In this study, we use resilience engineering metrics to assess the performance of a sensor fusion algorithm for vehicle localization. A Kalman Filter is used to fuse GPS, IMU and LiDAR data for vehicle localization in the CARLA simulator.
Technical Paper

Validation and Analysis of the Fuel Cell Plug-in Hybrid Electric Vehicle Built by Colorado State University for the EcoCAR 2: Plugging into the Future Vehicle Competition

2014-10-13
2014-01-2910
EcoCAR 2 is the premiere North American collegiate automotive competition that challenges 15 North American universities to redesign a 2013 Chevrolet Malibu to decrease the environmental impact of the Malibu while maintaining its performance, safety, and consumer appeal. The EcoCAR 2 project is a three year competition headline sponsored by General Motors and U.S. Department of Energy. In Year 1 of the competition, extensive modeling guided the Colorado State University (CSU) Vehicle Innovation Team (VIT) to choose an all-electric vehicle powertrain architecture with range extending hydrogen fuel cells, to be called the Malibu H2eV. During this year, the CSU VIT followed the EcoCAR 2 Vehicle Design Process (VDP) to develop the H2eV's electric and hydrogen powertrain, energy storage system (ESS), control systems, and auxiliary systems.
Technical Paper

Development and Validation of the Ford Focus Battery Electric Vehicle Model

2014-04-01
2014-01-1809
This paper presents the vehicle model development and validation process for the Ford Focus battery electric vehicles (BEVs) using Autonomie and test results from Advanced Powertrain Research Facility in Argonne National Laboratory. The parameters or characteristic values for the important components such as the electric machine and battery pack system are estimated through analyzing the test data of the multi cycle test (MCT) procedure under the standard ambient condition. A novel process was used to import vehicle test data into Autonomie. Through this process, a complete vehicle model of the Ford Focus BEV is developed and validated under ambient temperature for different drive cycles (UDDS, HWFET, US06 and Steady-State). The simulation results of the developed vehicle model show coincident results with the test data within 0.5% ∼ 4% discrepancies for electrical consumption.
Technical Paper

Detailed Analysis of a Fuel Cell Plug-in Hybrid Vehicle Demonstration

2014-04-01
2014-01-1925
Plug-in Hybrid Electric Vehicles (PHEV) offer the benefits of both home charging from grid electricity and extended range from fuels. Fuel cell PHEVs in a range-extending (FCEREV) configuration build upon the advantages of PHEV by producing zero emissions while driving. The Colorado State University Vehicle Innovation Team (CSU VIT) successfully designed, built, and demonstrated a FCEREV named ‘H2eV’ for Year Two of the 3-year EcoCAR 2 collegiate competition. The demonstrated FCEREV is based on the 2013 Chevrolet Malibu and features a 15 kW Polymer Electrolyte Membrane fuel cell system, an 18.9 kWh/177 kW Li-Ion battery, and a 145 kW motor for all-electric drive. Operational data was taken during driving on a closed course, following a cycle that approximates the Environmental Protection Agency's 5-cycle test procedure. This paper provides an overview of the CSU VIT's FCEREV and a detailed analysis of vehicle performance during its successful demonstration.
X