Refine Your Search

Topic

Search Results

Technical Paper

Optimal Management of Charge and Discharge of Electric Vehicles Based on CAN Bus Communication

2020-04-14
2020-01-1297
With the shortage of energy and the continuous development of automotive technology, electric vehicles are gradually gaining popularity. The energy of electric vehicles mainly comes from the power grid, and its large-scale use is inseparable from the support of the power system. However, electric vehicles consume power quickly, have short driving ranges, and frequently charge, and there are plenty of problems such as disorder and randomness in charging, which is not conducive to rational planning of the power grid. Optimizing the charging problem of electric vehicles can not only save power resources but also bring huge economic benefits to operators of charging stations. In this paper, the CAN bus communication protocol, combined with GPS positioning, LabVIEW monitoring, GPRS transmitting and other technical means, can realize the information exchange of the "vehicle-charging device-distribution network".
Technical Paper

Research on Solar Thermal Energy Warming Diesel Engine Based on Reverse Heat Transfer of Coolant

2020-04-14
2020-01-1343
In winter, the temperature of the coldest month is below -20°C. Low temperature makes it difficult to start a diesel engine, combust sufficiently, which increases fuel consumption and pollutes the environment. The use of an electric power-driven auxiliary heating system increases the battery load and power consumption. Solar thermal energy has the advantages of easy access, clean and pollution-free. The coolant in the cylinder block of the diesel engine has a large contact area within the cylinder and is evenly distributed, which can be used as a heat transfer medium for the warm-up. A one-dimensional heat transfer model of the diesel engine block for the coolant warm-up is developed, and the total heat required for the warm-up is calculated by an iterative method in combination with the warm-up target.
Technical Paper

Parameter Optimization of Two-Speed AMT Electric Vehicle Transmission System

2020-04-14
2020-01-0435
At present, many electric vehicles are often equipped with only a single-stage final drive. Although the single-stage speed ratio can meet the general driving requirements of electric vehicles, if the requirements of the maximum speed and the requirements for starting acceleration or climbing are met at the same time, the power demand of the drive motor is relatively large, and the efficient area of the drive motor may be far away from the operating area corresponding to daily driving. If the two-speed automatic transmission is adopted, the vehicle can meet the requirements of maximum speed, starting acceleration and climbing at the same time, reduce the power demand of the driving motor, and improve the economy under certain power performance. This is especially important for medium and large vehicles.
Technical Paper

Research on the Performance of Battery Thermal Management System Based on Optimized Arrangement of Flat Plate Heat Pipes

2020-04-14
2020-01-0162
The thermal management system is essential for the safe and long-term operation of the power battery. The temperature difference between the individual cells exceeds the acceleration of the battery performance, which leads to battery out of use and affects the performance of the vehicle. Compared with the low heat transfer coefficient of the air-cooling system, the complex structure of the liquid-cooling system and the large quality of phase change material system, the heat pipe has high thermal conductivity, strong isothermal performance and light weight, it’s an efficient cooling element that can be used for thermal management. In this study, the flat plate heat pipe(FPHP) is used to manage the temperature of the battery, through experiments, the optimized placement of the flat heat pipe is obtained.
Technical Paper

Kalman Filter Slope Measurement Method Based on Improved Genetic Algorithm-Back Propagation

2020-04-14
2020-01-0897
How to improve the measurement accuracy of road gradient is the key content of the research on the speed warning of commercial vehicles in mountainous roads. The large error of the measurement causes a significant effect of the vehicle speed threshold, which causes a risk to the vehicle's safety. Conventional measuring instruments such as accelerometers and gyroscopes generally have noise fluctuation interference or time accumulation error, resulting in large measurement errors. To solve this problem, the Kalman filter method is used to reduce the interference of unwanted signals, thereby improving the accuracy of the slope measurement. However, the Kalman filtering method is limited by the estimation error of various parameters, and the filtering effect is difficult to meet the project research requirements.
Technical Paper

Pre-Curve Braking Planning of Battery Electric Vehicle Based on Vehicle Infrastructure Cooperative System

2020-10-05
2020-01-1643
Braking energy recovery is an important method for Battery Electric Vehicle (BEV) to save energy and increase driving range. The vehicle braking system performs regenerative braking control based on driver operations. Different braking operations have a significant impact on energy recovery efficiency. This paper proposes a method for planning the braking process of a BEV based on the Intelligent Vehicle Infrastructure Cooperative System (IVICS). By actively planning the braking process, the braking energy recovery efficiency is improved. Vehicles need to decelerate and brake before entering a curve. The IVICS is used to obtain information about the curve section ahead of the vehicle's driving route. Then calculating the reference speed of the curve, and obtaining the vehicle's braking target in advance, so as to actively plan the vehicle braking process.
Technical Paper

An Image Recognition Application Method for Vertical Movement of Vehicles

2020-04-14
2020-01-0733
In ITS, image processing technology is applied to a wide variety of areas such as visual-based intelligent vehicle navigation, visual-based traffic monitoring and visual-based traffic management. In the recognition system of the vehicle body characteristics, most of the recognition is the license plate and the car emblem, etc. This paper proposes an image recognition application method for the vertical motion of the car while driving, mainly including vertical height detection and vertical displacement velocity acceleration recognition. The edge detection model of the image object is established by using the gray image to obtain the car motion segmentation image. At the same time, an image length and actual length coordinate conversion model is established, which can calculate an arbitrary actual length of the image object. In this paper, Yuejin Shangjun X500 van was selected as the test vehicle, and the video data was captured with a camera.
Technical Paper

Effect of Stator Surface Area on Braking Torque and Wall Heat Dissipation of Magnetorheological Fluid Retarder

2020-04-14
2020-01-0937
Magnetorheological fluid (MRF) is used as the transmission medium of the hydraulic retarder. The rheological properties are regulated by changing the magnetic field to achieve accurate control of the retarder's braking torque. Under the action of the external magnetic field, the flow structure and performance of the MRF retarder will be changed in a short time. The apparent viscosity coefficient increases by several orders of magnitude, the fluidity deteriorates and the heat generated by the brake cannot be transferred through the liquid circulation, which will affect the braking torque of the retarder. Changing the surface area of the stator also has an influence on the braking torque of the retarder and the wall heat dissipation. In this study, the relationship between the braking torque of the MRF retarder and the stator surface area of the retarder was analyzed.
Technical Paper

Strength Analysis and Modal Analysis of Hydraulic Retarder

2009-10-06
2009-01-2896
Hydraulic retarder is one of main auxiliary braking devices of the vehicle. When the vehicle is braking, a great pressure from high-speed fluid is received by hydraulic retarder blades. It is difficult to predict rational hydraulic retarder strength, owing to the complexity of the internal flow of oil. An optimal calculation way of hydraulic retarder strength is proposed based on CFD and FEA, concluding a reasonable result. The 3-D model of hydraulic retarder is built in the general CAD software. The model of fluid passage is extracted, according to the condition when the whole flow passage is filled with oil, and imported to CFD software. The inner flow field of hydraulic retarder is analyzed and the hydraulic surface pressure distribution of the hydraulic retarder blade is obtained at the highest rotary speed of turbine wheel.
Technical Paper

Co-simulation Based Hydraulic Retarder Braking Control System

2009-10-06
2009-01-2907
Hydraulic retarder has been widely applied on military vehicles and heavy commercial vehicles because of it could provide great brake torque and has lasting working time [1]. In order to reduce driver's frequent actions in braking process and prevent hydraulic retarder system from overheating, it is need to apply constant braking torque control, this control target has a strict requirement to hydraulic control system design. Many parameters often require repeated test to determine, which increases the R&D cost and extends the research cycle. This paper tries to find a time-efficient research method of hydraulic retarder control system through studying on a heavy military vehicle hydraulic retarder system. Hydraulic retarder model is set up through test data. The hydraulic control system is built based on AMESim. Controller model is set up based on PID control. The whole vehicle brake model is built based on MATLAB/Simulink.
Technical Paper

Research on Road Simulator with Iterative Learning Control

2009-10-06
2009-01-2908
Road simulation experiment in laboratory is a most important method to enhance the design quality of vehicle products. Presently, two main control techniques for road simulation—remote parameter control (RPC) and minimum variance adaptive control—are both defective: the former becomes an open-loop control after generating the drive signals, however the latter is essentially a kind of gradual control. To realize the closed-loop control and increase the control quality, this article brings forward a PID open-closed loop control method. Firstly taking the original road simulator as a group to identify, a nonlinear autoregressive moving average (NARMA) model was built with the dynamic neural network. Subsequently, this plant model was used to build the open-closed loop control system mentioned above. In the closed-loop a discrete PID controller was introduced to stabilize the system, while a P-type iterative learning control (ILC) was adopted to increase the control quality.
Technical Paper

Nonlinear System Identification of Road Simulation Platform

2010-05-05
2010-01-1539
On road simulation, both the traditional iterative method based on frequency response function (FRF) and adaptive control method based on the CARMA model are realized by using linear model to identify the target test system. However the real test system is very complicated because of various nonlinear factors. Linear models approximately describe the system only in a small range. Therefore, system simulation methods can not be used to validate the developed control algorithm and the uncertainty of test accordingly increases. As mentioned above, this paper presents a model to identify the nonlinear test system using NARMA dynamic neural network and discusses how to make the model parameters in detail. Using the test input-output series data, this network was trained by Levenberg-Marquardt method. Results of verification simulation show the validation of the nonlinear model.
Technical Paper

The Research of the Adaptive Front Lighting System Based on GIS and GPS

2017-03-28
2017-01-0041
Automotive Front Lighting System(AFS) can receive the steering signal and the vehicular speed signal to adjust the position of headlamps automatically. AFS will provide drivers more information of front road to protect drivers safe when driving at night. AFS works when there is a steering signal input. However, drivers often need the front road's information before they turn the steering wheel when vehicles are going to go through a sharp corner, AFS will not work in such a situation. This paper studied how to optimize the working time of AFS based on GIS (Geographic Information System) and GPS(Geographic Information System) to solve the problem. This paper analyzed the process of the vehicle is about to go through a corner. Low beams and high beams were discussed respectively.
Technical Paper

Fuel-Efficient Driving for Motor Vehicles Based on Slope Recognition

2017-03-28
2017-01-0037
The drivers' hysteretic perception to surrounding environment will affect vehicular fuel economy, especially for the heavy-duty vehicles driving under complex conditions and long distance in mountainous areas. Unreasonable acceleration or deceleration on the slope will increase the fuel consumption. Improving the performance of the engine and the transmission system has limited energy saving potential, and most fuel-efficient driving assistant systems don't consider the road conditions. The main purpose of this research is to introduce an economic driving scheme with consideration of the prestored slope information in which the vehicle speed in mountainous slopes is reasonably planned to guide the driver's behavior for reduction of the fuel consumption. Economic driving optimization algorithm with low space dimension and fast computation speed is established to plan accurate and real-time economic driving scheme.
Technical Paper

Model-Based Pressure Control for an Electro Hydraulic Brake System on RCP Test Environment

2016-09-18
2016-01-1954
In this paper a new pressure control method of a modified accumulator-type Electro-hydraulic Braking System (EHB) is proposed. The system is composed of a hydraulic motor pump, an accumulator, an integrated master cylinder, a pedal feel simulator, valves and pipelines. Two pressurizing modes are switched between by-motor and by-accumulator to adapt different pressure boost demands. A differentiator filtering raw sensor signal and calculating pedal speed is designed. By using the pedal feel simulator, the relationship between wheel pressures and brake force is decoupled. The relationships among pedal displacement, pedal force and wheel pressure are calibrated by experiments. A model-based PI controller with predictor is designed to lower the influences caused by delay. Moreover, a self-tuning regulator is introduced to deal with the parameter’s time-varying caused by temperature, brake pads wearing and delay variation.
Technical Paper

Driving Path Planning System under Vehicular Active Safety Constraint

2016-09-27
2016-01-8105
Path planning system, which is one of driver assistance systems, can calculate the driving paths and estimate the driving time through the road information provided by information source. Traditional path planning systems calculate the driving paths through Dijsktra's algorithm or A* algorithm but only consider the road information from electronic maps. It is not safe enough for operating vehicles because of the insufficient information of vehicle performance as well as the driver's willingness. This study is based on the Dijsktra's algorithm, which comprehensively considered vehicular active safety constraints such as road information, vehicle performance and the driver's willingness to optimize the Dijsktra's algorithm. Then the path planning system can calculate the optimal driving paths that would satisfy the safety requirement of the vehicle. This study used LabVIEW as a visual host computer and MATLAB to calculate dynamic property of the vehicle.
Technical Paper

The Research of the Heavy Truck’s Warming System

2017-10-08
2017-01-2221
It’s not easy to start the engine in winter, especially in frigid highlands, because the low temperature increases the fuel’s viscosity, decreasing the lubricating oil flow ability and the storage performance of battery. Current electrical heating method can improve the engine starting performance in low temperature condition, but this method adds an external power to the engine, leading to the engine cannot maintain an efficient energy utilization. A warming device using the solar energy is designed to conserve the energy during the daytime, and directly warm up the engine at the time when the engine turns off for a long time, especially during the night. A solar collector installed on the top of the vehicle is used to convert the solar energy to the thermal energy, which is then transferred to the heat accumulator that contain the phase-change medium which can increase the heat storage performance.
Technical Paper

Brake Guidance System for Commercial Vehicles with Coordinated Friction and Engine Brakes

2017-09-17
2017-01-2508
Using friction brakes for long time can increase easily its temperature and lower vehicle brake performance in the downhill process. The drivers' hysteretic perception to future driving condition could mislead them to stop untimely the engine brake, and some other auxiliary braking devices are designed to increase the brake power for reduction of the friction brake torque. The decompression engine brake has complex structure and high cost, and the application of eddy current retarder or hydraulic retarder on the commercial vehicles is mainly limited to their cost and mass. In this paper, an innovative brake guidance system for commercial vehicles with coordinated friction brakes and engine brake is introduced to guide the drivers to minimize the use of the friction brakes on the downhill with consideration of future driving conditions, which is aimed at releasing the engine brake potential fully and controlling the friction brake temperature in safe range.
Technical Paper

Study on the Effects of Magnetic Field on Magnetorheological Fluid Hydraulic Retarder Braking Torque

2017-09-17
2017-01-2503
In order to ensure driving safety, heavy vehicles are often equipped with hydraulic retarder, which provides sustained, stable braking torque and converts the vehicle kinetic energy into heat taken away by the cooling system when traveling on a long downhill. The conventional hydraulic retarder braking torque is modulated by adjusting the liquid filling rate, which leads to slow response and difficult control. In this paper, a new kind of magnetorheological (MR) fluid hydraulic retarder is designed by replacing the traditional transmission oil with MR fluid and arranging the excitation coils outside the working chamber. The braking torque can be controlled by the fluid viscosity of MR fluid with the variation of magnetic field. Compared with the traditional hydraulic retarder, the system has the advantages of fast response, easy control and high adjustment sensitivity.
Technical Paper

Battery Thermal Management System Using Water as a Phase Change Material

2017-10-08
2017-01-2454
In these years, the advantages of using phase change material (PCM) in the thermal management of electric power battery has been wide spread. Because of the thermal conductivity of most phase change material (eg.wax) is low, many researchers choose to add high conductivity materials (such as black lead). However, the solid-liquid change material has large mass, poor flow-ability and corrosively. Therefore, it still stays on experiential stage. In this paper, the Thermal characteristics of power battery firstly be invested and the requirements of thermal management system also be discussed. Then a new PCM thermal management has been designed which uses pure water as liquid phase change material, adopts PCM with a reflux device for thermal management.
X