Refine Your Search

Topic

Search Results

Standard

Ergonomic Guidelines for Carts and Dollies

2015-03-13
CURRENT
USCAR41
This document describes the assessment methods and physical requirements associated with the manual handling of carts and dollies, specific to material handling systems. All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an “off-the shelf” design, always consult the responsible Ergonomics Department. Force guidelines were primarily developed referencing the push/pull psychophysical Snook data contained in A Guide to Manual Materials Handling (second edition) by Mital, Nicholson and Ayoub (NY: Taylor & Francis, 1997). The force guidelines accommodate 75% of female capabilities and 99% of male capabilities. Factors that were included in the established guideline include: push / pull distances, vertical hand height, horizontal hand height, frequency and wheel / castor alignment and load rating. These factors were used to develop a conservative force guideline.
Standard

STANDARD FOR D.C. BRUSH MOTOR – HVAC BLOWERS

1999-02-01
HISTORICAL
USCAR6
This standard sets forth the performance and durability requirements for 12-volt, D.C. brush-type electric motors used for automobile Heating, Ventilation, and Air Conditioning (HVAC) blowers and outlines Production Validation and Continuing Conformance testing.
Standard

SPECIFICATION FOR TESTING GAS DISCHARGE LIGHT SOURCE SUBSYSTEM

2022-03-02
CURRENT
USCAR27-1
This specification is a general level subsystem light source specification that establishes test requirements of a Gas Discharge Light Source (GDLS) subsystem for use on passenger vehicles. The completed test data to this test specification is intended to be provided to the OEM by the Tier one lamp set maker as part of the lamp assembly PPAP. Re-testing shall be required if any portion of the approved GDLS experiences a design, manufacturing or component change. This document shall be applied to systems that meet the requirements for design, performance and validation established by government standards. The subsystem is defined as the ballast, igniter and light source and shall be tested as a subsystem and considered one test sample for the entire test sequence. A failure of any component in the test sample shall constitute a failure of the entire sample. Substitution or replacement of only the light source shall be allowed during testing.
Standard

SPECIFICATION FOR TESTING GAS DISCHARGE LIGHT SOURCE SUBSYSTEM

2007-10-08
HISTORICAL
USCAR27
This specification is a general level subsystem light source specification that establishes test requirements of a Gas Discharge Light Source (GDLS) subsystem for use on passenger vehicles. The completed test data to this test specification is intended to be provided to the OEM by the Tier one lamp set maker as part of the lamp assembly PPAP. Re-testing shall be required if any portion of the approved GDLS experiences a design, manufacturing or component change. This document shall be applied to systems that meet the requirements for design, performance and validation established by government standards. The subsystem is defined as the ballast, igniter and light source and shall be tested as a subsystem and considered one test sample for the entire test sequence. A failure of any component in the test sample shall constitute a failure of the entire sample. Substitution or replacement of only the light source shall be allowed during testing.
Standard

NEW FINISH DEVELOPMENT DOCUMENT

2020-11-19
CURRENT
USCAR32-1
This standard lists variables that shall be investigated and reported as an initial investigation into new or revised surface finishes intended for use on fasteners. This standard provides instruction for producing a final report that will be used to determine if further investigation of a surface finish is justified. Further investigation may include tests and evaluations specific to an individual OEM prior to introduction/approval of the surface finish. The final report shall include the results, observations, and conclusions for all of the variables. The final report may be made up of several individual reports covering each variable. In all cases the laboratory performing the test, the test date and the report approver shall be included in the final report.
Standard

NEW FINISH DEVELOPMENT DOCUMENT

2007-03-13
HISTORICAL
USCAR32
This standard lists variables that shall be investigated and reported as an initial investigation into new or revised surface finishes intended for use on fasteners. This standard provides instruction for producing a final report that will be used to determine if further investigation of a surface finish is justified. Further investigation may include tests and evaluations specific to an individual OEM prior to introduction/approval of the surface finish. The final report shall include the results, observations, and conclusions for all of the variables. The final report may be made up of several individual reports covering each variable. In all cases the laboratory performing the test, the test date and the report approver shall be included in the final report.
Standard

ROAD VEHICLES – 60 V AND 600 V SINGLE CORE (ISO/METRIC) CABLES – DIMENSIONS, TEST METHODS AND REQUIREMENTS

2002-09-09
HISTORICAL
USCAR23
This International Standard specifies the dimensions, test methods, and requirements for single core 60 V cables intended for use in road vehicle applications where the nominal system voltage is ≤ (60 V DC or 25 V AC). It also specifies additional test methods and/or requirements for 600 V cables intended for use in road vehicle applications where the nominal system voltage is > (60 V DC or 25 V AC) to ≤ (600 V DC or 600 V AC). It also applies to individual cores in multi-core cables. See ISO 6722 for “Temperature Class Ratings”.
Standard

STANDARD FOR TIRE TRACEABILITY CONTENT AND FORMAT FOR THE RADIO-FREQUENCY IDENTIFICATION (RFID) TAG AND ASSOCIATED TIRE DATA SET

2019-04-17
HISTORICAL
USCAR39
This standard describes a requirement for automotive tire traceability. It includes a definition of the RFID tag and the associated tire data set that can be accessed using the RFID tag as an identifier. The standard describes a unique identification and the associated data set for each tire produced by the tire fabricator. This data will either be provided or transmitted at the time of shipment to retailers, wholesalers or original equipment vehicle manufacturers. Tire identification code and data may be used for error proofing, determining the tire specifications or supporting any inquiries that occur for the duration of its automotive life.
Standard

STANDARD FOR TIRE TRACEABILITY CONTENT AND FORMAT FOR THE RADIO-FREQUENCY IDENTIFICATION (RFID) TAG AND ASSOCIATED TIRE DATA SET

2020-11-19
CURRENT
USCAR39-1
This standard describes a requirement for automotive tire traceability. It includes a definition of the RFID tag and the associated tire data set that can be accessed using the RFID tag as an identifier. The standard describes a unique identification and the associated data set for each tire produced by the tire fabricator. This data will either be provided or transmitted at the time of shipment to retailers, wholesalers or original equipment vehicle manufacturers. Tire identification code and data may be used for error proofing, determining the tire specifications or supporting any inquiries that occur for the duration of its automotive life.
Standard

SPECIFICATION FOR TESTING AUTOMOTIVE MINIATURE BULBS

2022-03-15
CURRENT
USCAR3-4
The procedures contained in this specification cover the laboratory testing of miniature incandescent bulbs for use in automotive illumination and signaling applications. The following tests shall be run whenever the following occurs: New bulb design Design or process change made to an existing bulb, which could affect the outcome of the test. The completion of one calendar year as noted in the following Test Schedule Table. Process control data is acceptable.
Standard

SPECIFICATION FOR TESTING AUTOMOTIVE MINIATURE BULBS

2009-12-01
HISTORICAL
USCAR3-3
The procedures contained in this specification cover the laboratory testing of miniature incandescent bulbs for use in automotive illumination and signaling applications. The following tests shall be run whenever the following occurs: New bulb design Design or process change made to an existing bulb, which could affect the outcome of the test. The completion of one calendar year as noted in the following Test Schedule Table. Process control data is acceptable.
Standard

Specification for Testing Automotive Halogen Light Sources

2006-01-01
HISTORICAL
USCAR14-2
The procedures contained in this specification cover the laboratory testing of replaceable halogen incandescent bulbs for use in automotive road illumination. The following tests are intended to be run under the following conditions. New bulb design Design or process change made to an existing bulb, which could affect the outcome of the test The completion of one calendar year, accept as noted in the following Test Schedule Table. Test Title Yearly Physical Dimensions X Mean Spherical Candela (MSCD) X External Visual Examination X Color X Leak/Sealability Through Terminals and Seals X Deflection X Fluid Compatibility Terminal Retention X Resonant Frequencies Aged Resonant Frequency Salt Spray Outgassing Temperatures Requirement Laboratory Life at 14.0 VDC X Luminous Intensity Maintenance X Vibration Durability Shock Aged Vibration Durability Terminal Requirements DRL (SAE J2087)
Standard

SPECIFICATION FOR TESTING AUTOMOTIVE HALOGEN LIGHT SOURCES

2022-03-15
CURRENT
USCAR14-3
The procedures contained in this specification cover the laboratory testing of replaceable halogen incandescent bulbs for use in automotive road illumination. The following tests are intended to be run under the following conditions. New bulb design Design or process change made to an existing bulb, which could affect the outcome of the test The completion of one calendar year, accept as noted in the following Test Schedule Table. Test Title Yearly Physical Dimensions X Mean Spherical Candela (MSCD) X External Visual Examination X Color X Leak/Sealability Through Terminals and Seals X Deflection X Fluid Compatibility Terminal Retention X Resonant Frequencies Aged Resonant Frequency Salt Spray Outgassing Temperatures Requirement Laboratory Life at 14.0 VDC X Luminous Intensity Maintenance X Vibration Durability Shock Aged Vibration Durability Terminal Requirements DRL (SAE J2087)
Standard

SPECIFICATION FOR TESTING AUTOMOTIVE HALOGEN LIGHT SOURCES

2002-04-15
HISTORICAL
USCAR14-1
The procedures contained in this specification cover the laboratory testing of replaceable halogen incandescent bulbs for use in automotive road illumination. The following tests are intended to be run under the following conditions. New bulb design Design or process change made to an existing bulb, which could affect the outcome of the test The completion of one calendar year, accept as noted in the following Test Schedule Table. Test Title Yearly Physical Dimensions X Mean Spherical Candela (MSCD) X External Visual Examination X Color X Leak /Sealability Through Terminals and Seals X Deflection X Fluid Compatibility Terminal Retention X Resonant Frequencies Aged Resonant Frequency Salt Spray Outgassing Temperatures Requirement Laboratory Life at 14.0 VDC X Luminous Intensity Maintenance Vibration Durability Shock Aged Vibration Durability Terminal Requirements DRL (SAE J2087)
Standard

SPECIFICATION FOR TESTING AUTOMOTIVE LED MODULES

2020-08-03
CURRENT
USCAR33-1
This specification is a general level subsystem light source specification that establishes test requirements of light emitting diode (LED) components and modules for use in automotive lighting systems. The completed test data from this test specification is intended to be provided to the OEM by the Tier 1 lamp set maker as part of the lamp assembly PPAP. Re-testing shall be required if any portion of the approved LED module experiences a design, manufacturing, or component change. This document shall be applied to systems that meet the requirements for design, performance, and validation established by government standards. The LED module is defined as the LED devices and any electronics required to properly energize the LEDs using a vehicle electrical power system along with any associated electrical wiring, connectors, and thermal management system. Samples shall be tested as a subsystem and considered one test sample for the entire test sequence.
Standard

SPECIFICATION FOR TESTING AUTOMOTIVE LED MODULES

2013-02-19
HISTORICAL
USCAR33
This specification is a general level subsystem light source specification that establishes test requirements of Light Emitting Diode (LED) components and modules for use in automotive lighting systems. The completed test data to this test specification is intended to be provided to the OEM by the Tier I lamp set maker as part of the lamp assembly PPAP. Re-testing shall be required if any portion of the approved LED modules experiences a design, manufacturing or component change. This document shall be applied to systems that meet the requirements for design, performance and validation established by government standards. The LED module is defined as the LED devices and any electronics required to properly energize the LEDs using vehicle electrical power system along with any associated electrical wiring, connectors and thermal management system. Samples shall be tested as a subsystem and considered one test sample for the entire test sequence.
Standard

PERFORMANCE SPECIFICATION FOR AUTOMOTIVE WIRE HARNESS RETAINER CLIPS

2017-05-10
HISTORICAL
USCAR44
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises a) from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray and different thicknesses of the holes that the clip is inserted into.
Standard

PERFORMANCE SPECIFICATION FOR AUTOMOTIVE WIRE HARNESS RETAINER CLIPS

2021-01-20
HISTORICAL
USCAR44-1
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray, and different thicknesses of the holes that the clip is inserted into.
X