Refine Your Search

Search Results

Viewing 1 to 14 of 14
Journal Article

Handling Analysis of a Vehicle Fitted with Roll-Plane Hydraulically Interconnected Suspension Using Motion-Mode Energy Method

2014-04-01
2014-01-0110
This paper employs the motion-mode energy method (MEM) to investigate the effects of a roll-plane hydraulically interconnected suspension (HIS) system on vehicle body-wheel motion-mode energy distribution. A roll-plane HIS system can directly provide stiffness and damping to vehicle roll motion-mode, in addition to spring and shock absorbers in each wheel station. A four degree-of-freedom (DOF) roll-plane half-car model is employed for this study, which contains four body-wheel motion-modes, including body bounce mode, body roll mode, wheel bounce mode and wheel roll mode. For a half-car model, its dynamic energy contained in the relative motions between its body and wheels is a sum of the energy of these four motion-modes. Numerical examples and full-car experiments are used to illustrate the concept of the effects of HIS on motion-mode energy distribution.
Journal Article

The Safety and Dynamic Performance of Blended Brake System on a Two-Speed DCT Based Battery Electric Vehicle

2016-04-05
2016-01-0468
Regenerative braking has been widely accepted as a feasible option to extend the mileage of electric vehicles (EVs) by recapturing the vehicle’s kinetic energy instead of dissipating it as heat during braking. The regenerative braking force provided by a generator is applied to the wheels in an entirely different manner compared to the traditional hydraulic-friction brake system. Drag torque and efficiency loss may be generated by transmitting the braking force from the motor, axles, differential and, specifically in this paper, a two-speed dual clutch transmission (DCT) to wheels. Additionally, motors in most battery EVs (BEVs) and hybrid electric vehicle (HEVs) are only connected to front or rear axle. Consequently, conventional hydraulic brake system is still necessary, but dynamic and supplement to motor brake, to meet particular brake requirement and keep vehicle stable and steerable during braking.
Technical Paper

Performance Improvement of a Two Speed EV through Combined Gear Ratio and Shift Schedule Optimization

2013-04-08
2013-01-1477
This paper proposes an approach to optimize the economy performance of a two-speed electric vehicle (EV) by combining gear shifting schedule design and gear ratios selection. Mathematic models for the two-speed EV subsystems are developed, including those of the battery module, electric machine, the driver, transmission and vehicle. Then a procedure for obtaining the optimal gear ratio pairs and corresponding shift schedule for the two-speed EV is presented in detail. The optimized EV powertrain parameters can not only ensure that basic requirements in dynamic performance are achieved, but realize the optimal economic performance of the EV as well. In order to investigate the effectiveness of the proposed method for EV design, simulations based on the developed powertrain model is conducted using different test driving cycles, including NEDC and constant speed. Results of these simulations validate the effectiveness of the proposed optimization method.
Technical Paper

Experimental Comparison of Anti-Roll Bar with Hydraulically Interconnected Suspension in Articulation Mode

2013-04-08
2013-01-0710
A detailed experimental study to quantitatively compare a roll-plane hydraulically interconnected suspension with anti-roll bar in articulation (warp) mode is presented in this paper. Anti-roll bar as part of conventional vehicle suspension system is a standard configuration widely used in road vehicles to provide the essential roll-stiffness to enhance vehicle handling and safety during fast cornering. However the drawback of anti-roll bar is apparent that they limit the wheels' travel on uneven road surface and weaken the wheel/ground holding ability, particularly in articulation mode. Roll-plane Hydraulically Interconnected Suspension (HIS) system, as a potential replacement of anti-roll bar, could effectively increase vehicle roll-stiffness and provide the tunable damping effect, without compromising vehicle's flexibility in articulation mode.
Technical Paper

Development of a Clunk Simulation Model for a Rear Wheel Drive Vehicle With Automatic Transmission

2005-05-16
2005-01-2292
A reduced model is developed for transient analysis of gear rattle in an automatic transmission (AT) powertrain. Linear modal analysis for the reduced order model compares well with a detailed model that includes planetary gear dynamics. Clearance type lash functions are used for the reduced geared coordinates of the automatic transmission and final drive. Impacts within the gear pairs are affected by the engine surging, shaft stiffness, component inertias, engine harmonics, drag torques, braking, viscous damping and vehicle load. The occurrence of these impacts, or clunk, from shuffle and axle oscillations is demonstrated under typical driving conditions.
Technical Paper

An Investigation into Dynamics and Stability of a Powertrain with Half-Toroidal Type CVT

2004-08-23
2004-40-0034
This paper presents a study on the dynamics and stability of a conventional powertrain with a Halt Toroidal (HT) type Continuously Variable Unit (CVU). A mathematic system model of the powertrain is assembled from parametric finite elemens that are formulated from lumped mass, torsional stiffness and damping and varying gear rations. Simulations have been carried out to investigate the transient behaviour of the powertrain. The damping within the system has been varied to investigate its effect on the dynamic stability of the powertrain. The obtained results show that transient responses of input and output rollers of the HT-CVU exist when clutch changes during vehicle acceleration period starting from stand-still condition. Sever or even unstable responses of HT-CVU take place if the damping is insufficient in HT-CVU and typres not only in the initial acceleration period but also in later period after the clutch change.
Technical Paper

An Investigation into Dynamics and Stability of a Powertrain with Half-Toroidal Type CVT

2004-08-23
2004-40-0050
This paper presents a study on the dynamics and stability of a conventional powertrain with a Half Toroidal (HT) type Continuously Variable Unit (CVU). A mathematic system model of the powertrain is assembled from parametric finite elements that are formulated from lumped mass, torsional stiffness and damping and varying gear ratios. Simulations have been carried out to investigate the transient behaviour of the powertrain. The damping within the system has been varied to investigate its effect on the dynamic stability of the powertrain. The obtained results show that transient responses of input and output rollers of the HT-CVU exist when clutch changes during vehicle acceleration period starting from standstill condition. Severe or even unstable responses of HT-CVU take place if the damping is insufficient in HT-CVU and tyres not only in the initial acceleration period but also in later period after the clutch change.
Technical Paper

Tyre Load Analysis of Hydro-Pneumatic Interconnected Suspension with Zero Warp Suspension Stiffness

2015-04-14
2015-01-0630
The purpose of this paper is to present a concept of Hydro-Pneumatic Interconnected Suspension (HPIS) and investigate the unique property of the zero warp suspension stiffness. Due to the decoupling of warp mode from other modes, the road holding ability of the vehicle is maximized meanwhile the roll stability and ride comfort can be tuned independently and optimally without compromise. Ride comfort can be improved with reduced bounce stiffness and the progressive air spring rate can reduce the requirement of suspension deflection space. The roll stability can also be improved by increased roll stiffness. Vehicle suspension system modelling and modal analysis are carried out and compared with conventional suspension. The frequency response of tyres' dynamic load reveals that the proposed zero-warp-stiffness suspension enables the free articulation of front and rear axles at low frequency.
Technical Paper

An Electric Scooter with Super-Capacitor Drive and Regenerative Braking

2014-04-01
2014-01-1878
This paper presents a smart electric scooter system consisting of a microprocessor based vehicle controller (integrating an embedded regenerative braking controller), a 300W Permanent Magnet (PM) DC motor, two low-power DC-DC converters to form a higher power DC-DC converter pack, a motor controller, a supercapacitor bank and a capacitor cell balancing sub-system.
Technical Paper

Comparison of Powertrain System Configurations for Electric Passenger Vehicles

2015-03-10
2015-01-0052
Electric vehicles (EV) are considered a practical alternative to conventional and hybrid electric passenger vehicles, with higher overall powertrain efficiencies by omitting the internal combustion engine. As a consequence of lower energy density in the battery energy storage as compared to fossil fuels powered vehicles, EVs have limited driving range, leading to a range phobia and limited consumer acceptance. Particularly for larger luxury EVs, electric motors with a single reduction gear typically do not achieve the diverse range of function needs that are present in multi-speed conventional vehicles, most notably acceleration performance and top speed requirements. Subsequently, multi-speed EV powertrains have been suggested for these applications. Through the utilization of multiple gear ratios a more diverse range of functional needs can be realized without increasing the practical size of the electric motor.
Technical Paper

Experimental Investigation of Interconnected Hydraulic Suspensions with Different Configurations to Soften Warp Mode for Improving Off-Road Vehicle Trafficability

2015-04-14
2015-01-0658
Hydraulic suspension systems with different interconnected configurations can decouple suspension mode and improve performance of a particular mode. In this paper, two types of interconnected suspensions are compared for off-road vehicle trafficability. Traditionally, anti-roll bar, a mechanically interconnected suspension system, connecting left and right suspension, decouples roll mode from the bounce mode and results in a stiff roll mode and a soft bounce mode, which is desired. However, anti-roll bars fail to connect the front wheel motions with the rear wheels', thus the wheels' motions in the warp mode are affected by anti-roll bars and it results an undesired stiffened warp mode. A stiffened warp mode limits the wheel-ground contact and may cause one wheel lift up especially during off-road drive. In contrast with anti-roll bars, two types of hydraulic suspensions which interconnect four wheels (for two-axis vehicles) can further decouple articulation mode from other modes.
Technical Paper

Study of Power Losses in a Two-Speed Dual Clutch Transmission

2014-04-01
2014-01-1799
This paper mainly studies the power losses in a refined two-speed dual clutch transmission which is equipped in a electric vehicle test rig. Both numerical and experimental investigations are carried out. After theoretical analysis of the power losses original sources, the developed model is implemented into simulation code to predict the power losses. In order to validate the effectiveness of the proposed model, results from experimental test are used to compare the difference the simulation and test. The simulation and test result agree well with each other. Results show that the power losses in the two-speed are mainly generated by multi-plate wet clutch drag torque and gear churning loss.
Technical Paper

Dynamic Modelling and Simulation of a New Spring-Based Synchronizer for Electric Vehicle

2021-04-06
2021-01-0321
Compared to the widely used single-speed transmission in electric vehicles (EVs), the two-speed transmission can improve both the dynamic performance and driving efficiency. This paper investigates the new spring-based synchronizer used in two-speed automated manual transmission (AMT). Compared with the traditional synchronizer which uses friction torque to implement the synchronization process, the proposed synchronizer uses torque spring to provide torque to synchronize the speed between target gear and shaft, which reduces the wear caused by friction and decreases the shifting time. To comprehensively study the performance of the new spring-based synchronizer, its dynamic model is built in AMESim software. The shifting time and contact torque are analyzed through simulating the dynamic model, which demonstrates that the new synchronizer can reduce the shifting time and contact torque compared to the traditional friction-based synchronizer.
Technical Paper

Two Motor Two Speed Power-Train System Research of Pure Electric Vehicle

2013-04-08
2013-01-1480
Method to improve the efficiency and the design of more efficient pure electric vehicle (PEV) system is a research hotspot for the automobile industry worldwide. Traditionally, PEV powertrains are dominated almost exclusively by single reducer structures in both concept and commercially available PEVs. This paper presents a novel two motor two speed pure electric power-train structure to study alternate methods for improving the operating efficiency of a typical PEV. This idea is derived from conventional power splitting transmissions to achieve motor efficiency optimization and ultimately lead to running range improvement. Through parameter matching and simulation, results demonstrated that the proposed two motor two speed PEV can realize better vehicle performance than single reducer PEV system; furthermore it can behave even better than a similar single motor two speed system.
X