Refine Your Search

Topic

Search Results

Journal Article

A Normally Aspirated Spark Initiated Combustion System Capable of High Load, High Efficiency and Near Zero NOx Emissions in a Modern Vehicle Powertrain

2010-10-25
2010-01-2196
Turbulent Jet Ignition is an advanced spark-initiated pre-chamber combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This next-generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high energy ignition system results from the partially combusted (reacting) prechamber products initiating main chamber combustion. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low temperature combustion technologies (HCCI) without the complex control drawbacks.
Journal Article

Flame Kernel Development for a Spark Initiated Pre-Chamber Combustion System Capable of High Load, High Efficiency and Near Zero NOx Emissions

2010-10-25
2010-01-2260
Turbulent Jet Ignition is an advanced spark-initiated pre-chamber combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This next-generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high energy ignition system results from the partially combusted (reacting) pre-chamber products initiating main chamber combustion. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low temperature combustion technologies (HCCI) without the complex control drawbacks.
Journal Article

4 L Light Duty LPG Engine Evaluated for Heavy Duty Application

2010-05-05
2010-01-1463
Many applications of liquefied petroleum gas (LPG) to commercial vehicles have used their corresponding diesel engine counterparts for their basic architecture. Here a review is made of the application to commercial vehicle operation of a robust 4 L, light-duty, 6-cylinder in-line engine produced by Ford Australia on a unique long-term production line. Since 2000 it has had a dedicated LPG pick-up truck and cab-chassis variant. A sequence of research programs has focused on optimizing this engine for low carbon dioxide (CO₂) emissions. Best results (from steady state engine maps) suggest reductions in CO₂ emissions of over 30% are possible in New European Drive Cycle (NEDC) light-duty tests compared with the base gasoline engine counterpart. This has been achieved through increasing compression ratio to 12, running lean burn (to λ = 1.6) and careful study (through CFD and bench tests) of the injected LPG-air mixing system.
Journal Article

A Turbulent Jet Ignition Pre-Chamber Combustion System for Large Fuel Economy Improvements in a Modern Vehicle Powertrain

2010-05-05
2010-01-1457
Turbulent Jet Ignition is an advanced pre-chamber initiated combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This next-generation pre-chamber design overcomes previous packaging obstacles by simply replacing the spark plug in a modern four-valve, pent roof spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, distributed ignition sites, which consume the main charge rapidly and with minimal combustion variability. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low temperature combustion technologies (homogeneous charge compression ignition - HCCI) without the complex control drawbacks.
Journal Article

Combustion System Development and Analysis of a Downsized Highly Turbocharged PFI Small Engine

2010-09-28
2010-32-0093
This paper provides some insight into the future direction for developing smaller capacity downsized engines, which will be needed to meet tight CO₂ targets and the world's future powertrain requirements. This paper focuses on the combustion system development and combustion analysis results for a downsized 0.43-liter highly turbocharged engine. The inline two-cylinder engine used in experiments was specifically designed and constructed to enable 25 bar BMEP. Producing this specific output is one way forward for future passenger vehicle powertrains, enabling in excess of 50% swept capacity reduction whilst maintaining comparable vehicle performance. Previous experiments and analysis have found that the extent to which larger engines can be downsized while still maintaining equal performance is combustion limited.
Journal Article

Ignition Energy Development for a Spark Initiated Combustion System Capable of High Load, High Efficiency and Near Zero NOx Emissions

2010-09-28
2010-32-0088
Turbulent Jet Ignition is an advanced pre-chamber initiated combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This type of ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high-energy ignition system results from the partially combusted (reacting) pre-chamber products initiating main chamber combustion. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low-temperature combustion technologies (HCCI) without the complex control drawbacks. Previous Turbulent Jet Ignition experimental results have highlighted peak net indicated thermal efficiency values of 42% in a standard modern engine platform.
Journal Article

An Integrated Model of Energy Transport in a Reciprocating, Lean Burn, Spark Ignition Engine

2015-04-14
2015-01-1659
This paper presents a combined experimental and numerical method for analysing energy flows within a spark ignition engine. Engine dynamometer data is combined with physical models of in-cylinder convection and the engine's thermal impedances, allowing closure of the First Law of Thermodynamics over the entire engine system. In contrast to almost all previous works, the coolant and metal temperatures are not assumed constant, but rather are outputs from this approach. This method is therefore expected to be most useful for lean burn engines, whose temperatures should depart most from normal experience. As an example of this method, the effects of normalised air-fuel ratio (λ), compression ratio and combustion chamber geometry are examined using a hydrogen-fueled engine operating from λ = 1.5 to λ = 6. This shows large variations in the in-cylinder wall temperatures and heat transfer with respect to λ.
Journal Article

Visualization of Propane and Natural Gas Spark Ignition and Turbulent Jet Ignition Combustion

2012-10-23
2012-32-0002
This study focuses on the combustion visualization of spark ignition combustion in an optical single cylinder engine using natural gas and propane at several air to fuel ratios and speed-load operating points. Propane and natural gas fuels were compared as they are the most promising gaseous alternative fuels for reciprocating powertrains, with both fuels beginning to find wide market penetration on the fleet level across many regions of the world. Additionally, when compared to gasoline, these gaseous fuels are affordable, have high knock resistance and relatively low carbon content and they do not suffer from the complex re-fueling and storage problems associated with hydrogen.
Technical Paper

Car Fuel Efficiency-Where Next

1991-11-01
912521
A validated model which attributes fuel consumption to 11 components of a vehicle's energy loss, has been applied to investigate the benefits from improvements in design parameters which can reduce fuel use. Sensitivity analysis of a large, family sized car, gives the ranked order of design variables for improving fuel consumption as: vehicle mass, idle fuel rate or engine friction (or both) and rolling resistance for urban driving. Amongst the remaining parameters aerodynamic drag is lowly ranked but, in highway driving, it ranks first along with vehicle mass and rolling resistance, thus indicating that the proportion of urban to highway driving, which will vary from country to country is important. Driving conditions should be optimised along with vehicle design for best energy conservation and greenhouse gas mitigation.
Technical Paper

Highly Turbocharging a Restricted, Odd Fire, Two Cylinder Small Engine - Design, Lubrication, Tuning and Control

2006-12-05
2006-01-3637
This paper describes the mechanical component design, lubrication, tuning and control aspects of a restricted, odd fire, highly turbocharged (TC) engine for Formula SAE competition. The engine was specifically designed and configured for the purpose, being a twin cylinder inline arrangement with double overhead camshafts and four valves per cylinder. Most of the engine components were specially cast or machined from billets. A detailed theoretical analysis was completed to determine engine specifications and operating conditions. Results from the analysis indicated a new engine design was necessary to sustain highly TC operation. Dry sump lubrication was implemented after initial oil surge problems were found with the wet sump system during vehicle testing. The design and development of the system is outlined, together with brake performance effects for the varying systems.
Technical Paper

The Feasibility of Downsizing a 1.25 Liter Normally Aspirated Engine to a 0.43 Liter Highly Turbocharged Engine

2007-09-16
2007-24-0083
In this paper, performance, efficiency and emission experimental results are presented from a prototype 434 cm3, highly turbocharged (TC), two cylinder engine with brake power limited to approximately 60 kW. These results are compared to current small engines found in today's automobile marketplace. A normally aspirated (NA) 1.25 liter, four cylinder, modern production engine with similar brake power output is used for comparison. Results illustrate the potential for downsized engines to significantly reduce fuel consumption while still maintaining engine performance. This has advantages in reducing vehicle running costs together with meeting tighter carbon dioxide (CO2) emission standards. Experimental results highlight the performance potential of smaller engines with intake boosting. This is demonstrated with the test engine achieving 25 bar brake mean effective pressure (BMEP).
Technical Paper

Optimized Design of a Cyclic Variability Constrained Lean Limit SI Engine at Optimum NOx and Efficiency Using a PSO Algorithm

2007-08-05
2007-01-3551
In recent times new tools have emerged to aid the optimization of engine design. The particle swarm optimizer, used here is one of these tools. However, applying it to the optimization of the S.I. engine for high efficiency and low NOx emission has shown the preference of ultra lean burn strategy combined with high compression ratios. For combined power, efficiency and emissions benefits, there are two restricting factors, limiting the applicability of this strategy, knocking and cyclic variability. In the ultra lean region, knocking is not an important issue but the variability is a major concern. This paper demonstrates the application of a variability model to limit the search domain for the optimization program. The results show that variability constrains the possible gains in fuel consumption and emission reduction, through optimizing cam phasing, mixture and spark timing. The fuel consumption gain is reduced by about 11% relative.
Technical Paper

Why Liquid Phase LPG Port Injection has Superior Power and Efficiency to Gas Phase Port Injection

2007-08-05
2007-01-3552
This paper reports comparative results for liquid phase versus gaseous phase port injection in a single cylinder engine. It follows previous research in a multi-cylinder engine where liquid phase was found to have advantages over gas phase at most operating conditions. Significant variations in cylinder to cylinder mixture distribution were found for both phases and leading to uncertainty in the findings. The uncertainty was avoided in this paper as in the engine used, a high speed Waukesha ASTM CFR, identical manifold conditions could be assured and MBT spark found for each fuel supply system over a wide range of mixtures. These were extended to lean burn conditions where gaseous fuelling in the multi-cylinder engine had been reported to be at least an equal performer to liquid phase. The experimental data confirm the power and efficiency advantages of liquid phase injection over gas phase injection and carburetion in multi-cylinder engine tests.
Technical Paper

Compression Ratio Effects on Performance, Efficiency, Emissions and Combustion in a Carbureted and PFI Small Engine

2007-08-05
2007-01-3623
This paper compares the performance, efficiency, emissions and combustion parameters of a prototype two cylinder 430 cm3 engine which has been tested in a variety of normally aspirated (NA) modes with compression ratio (CR) variations. Experiments were completed using 98-RON pump gasoline with modes defined by alterations to the induction system, which included carburetion and port fuel injection (PFI). The results from this paper provide some insight into the CR effects for small NA spark ignition (SI) engines. This information provides future direction for the development of smaller engines as engine downsizing grows in popularity due to rising oil prices and recent carbon dioxide (CO2) emission regulations. Results are displayed in the engine speed, manifold absolute pressure (MAP) and CR domains, with engine speeds exceeding 10000 rev/min and CRs ranging from 9 to 13. Combustion analysis is also included, allowing mass fraction burn (MFB) comparison.
Technical Paper

A Before and After Study of the Change to Unleaded Gasoline-Test Results from EPA and Other Cycles

1990-02-01
900150
A fleet of 50, 1986-1987 model year cars designed for unleaded gasoline has been tested on the road and on a chassis dynamometer over 5 driving cycles and a wide range of other manoeuvres including steady speeds. It was found that the fuel consumption of this fleet was 17 to 23% (depending on test cycle) less than that of a corresponding fleet to leaded fuelled cars of 1980 model year average. Exhaust emissions were significantly lowered in the range of 45 to 93%. However trend line analysis of the several data sets indicates that the ULG fleet has about 6% higher fuel consumption than would have been expected if there had been a continuing evolution of leaded vehicle technology. The data base produced has applicability to a wide range of planning and design tasks, and those illustrated indicate the effects of speed limit changes and advisory speed signs on fuel consumption and emissions.
Technical Paper

Comparing the Performance and Limitations of a Downsized Formula SAE Engine in Normally Aspirated, Supercharged and Turbocharged Modes

2006-11-13
2006-32-0072
This paper compares the performance of a small two cylinder, 430 cm3 engine which has been tested in a variety of normally aspirated (NA) and forced induction modes on 98-RON pump gasoline. These modes are defined by variations in the induction system and associated compression ratio (CR) alterations needed to avoid knock and maximize volumetric efficiency (ηVOL). These modes included: (A) NA with carburetion (B) NA with port fuel injection (PFI) (C) Mildly Supercharged (SC) with PFI (D) Highly Turbocharged (TC) with PFI The results have significant relevance in defining the limitations for small downsized spark ignition (SI) engines, with power increases needed via intake boosting to compensate for the reduced swept volume. Performance is compared in the varying modes with comparisons of brake mean effective pressure (BMEP), brake power, ηVOL, brake specific fuel consumption (BSFC) and brake thermal efficiency (ηTH).
Technical Paper

Gas Assisted Jet Ignition of Ultra-Lean LPG in a Spark Ignition Engine

2009-04-20
2009-01-0506
Gas assisted jet ignition is an advanced prechamber ignition process that allows ignition of ultra lean mixtures in an otherwise standard spark ignition engine. The results presented in this paper indicate that in a gas assisted jet ignition system fuelled with LPG in both the main chamber and prechamber, the lean limit can be extended to between λ = 2-2.35, depending on the load and speed. Although the fuel combinations that employ H2 as the prechamber fuel can extend the lean limit furthest (λ = 2.5-2.6), the extension enabled by the LPG-LPG prechamber-main chamber combination provides lower NOx emission levels at similar λ. In addition, when LPG is employed in place of gasoline as the main chamber fuel, hydrocarbon emissions are significantly reduced, however with a slight penalty in indicated mean effective pressure due to the gaseous state of the LPG.
Technical Paper

The Always Lean Burn Spark Ignition (ALSI) Engine – Its Performance and Emissions

2009-04-20
2009-01-0932
This paper is based on extensive experimental research with lean burn, high compression ratio engines using LPG, CNG and gasoline fuels. It also builds on recent experience with highly boosted spark ignition gasoline and LPG engines and single cylinder engine research used for model calibration. The final experimental foundation is an evaluation of jet assisted ignition that generally allows a lean mixture shift of more than one unit in lambda with consequential benefits of improved thermal efficiency and close to zero NOx. The capability of an ultra lean burn spark ignition engine is described. The concept is operation at air-fuel ratios similar to the diesel engine but with essentially homogenous charge, although some stratification may be desirable. To achieve high thermal efficiency this engine has optimized compression ratio but with variable valve timing which enables reduction in the effective compression ratio when desirable.
Technical Paper

Comparison of Pfi and Di Superbike Engines

2008-12-02
2008-01-2943
Gasoline Direct Injection (DI) is a technique that was successful in motor sports several decades ago and is now relatively popular in passenger car applications only. DI gasoline fuel injectors have been recently improved considerably, with much higher fuel flow rates and much finer atomization enabled by the advances in fuel pressure and needle actuation. These improved injector performance and the general interest in reducing fuel consumption also in motor sports have made this option interesting again. This paper compares Port Fuel Injection (PFI) and DI of gasoline fuel in a high performance, four cylinder spark ignition engine for super bike racing. Computations are performed with a code for gas exchange, heat transfer and combustion, simulating turbulent combustion and knock.
Technical Paper

The Performance and Emissions of the Turbocharged Always Lean Burn Spark Ignition (TC-ALSI) Engine

2010-04-12
2010-01-1235
This paper extends previous development of the ALSI concept, by investigating the performance delivered with a turbocharged version of this engine. The research is based on extensive experimental research with lean burn, high compression ratio engines using hydrogen, LPG, CNG and gasoline fuels. It also builds on recent experience with highly boosted spark ignition gasoline and LPG engines and single cylinder engine research used extensively for model calibration. The final experimental foundation is the wide ranging evaluation of jet assisted ignition that generally allows a lean limit mixture shift of more than one unit of lambda with consequential benefits of improved thermal efficiency and close to zero NOx. The paper describes the capability of the ultra lean burn spark ignition engine with the mild boost needed provided by a Honeywell turbocharger.
X