Refine Your Search

Topic

Search Results

Technical Paper

3D-CFD Full Engine Simulation Application for Post-Oxidation Description

2021-09-05
2021-24-0016
The introduction of real driving emissions cycles and increasingly restrictive emissions regulations force the automotive industry to develop new and more efficient solutions for emission reductions. In particular, the cold start and catalyst heating conditions are crucial for modern cars because is when most of the emissions are produced. One interesting strategy to reduce the time required for catalyst heating is post-oxidation. It consists in operating the engine with a rich in-cylinder mixture and completing the oxidation of fuel inside the exhaust manifold. The result is an increase in temperature and enthalpy of the gases in the exhaust, therefore heating the three-way-catalyst. The following investigation focuses on the implementation of post-oxidation by means of scavenging in a four-cylinder, turbocharged, direct injection spark ignition engine. The investigation is based on detailed measurements that are carried out at the test-bench.
Technical Paper

Discretization and Heat Transfer Calculation of Engine Water Jackets in 1D-Simulation

2020-04-14
2020-01-1349
The industry is working intensively on the precision of thermal management. By using complex thermal management strategies, it is possible to make engine heat distribution more accurate and dynamic, thereby increasing efficiency. Significant efforts are made to improve the cooling efficiency of the engine water jacket by using 3D CFD. As well, 1D simulation plays a significant role in the design and analysis of the cooling system, especially for considering transient behaviour of the engine. In this work, a practice-oriented universal method for creating a 1D water jacket model is presented. The focus is on the discretization strategy of 3D geometry and the calculation of heat transfer using Nusselt correlations. The basis and reference are 3D CFD simulations of the water jacket. Guidelines for the water jacket discretization are proposed. The heat transfer calculation in the 1D-templates is based on Nusselt-correlations (Nu = Nu(Re, Pr)), which are derived from 3D CFD simulations.
Technical Paper

Investigation of H2 Formation Characterization and its Contribution to Post- Oxidation Phenomenon in a Turbocharged DISI Engine

2020-09-15
2020-01-2188
In this research, simulation and experimental investigation of H2 emission formation and its influence during the post-oxidation phenomenon were conducted on a turbo-charged spark ignition engine. During the post-oxidation phenomenon phase, rich air-fuel ratio (A/F) is used inside the cylinder. This rich excursion gives rise to the production of H2 emission by various reactions inside the cylinder. It is expected that the generation of this H2 emission can play a key role in the actuation of the post-oxidation and its reaction rate if enough temperature and mixing strength are attained. It is predicted that when rich combustion inside the cylinder will take place, more carbon monoxide (CO)/ Total Hydro Carbon (THC)/ Hydrogen (H2) contents will arrive in the exhaust manifold. This H2 content facilitates in the production of OH radical which contributes to the post-oxidation reaction and in-turn can aid towards increasing the enthalpy.
Journal Article

Virtual Full Engine Development: 3D-CFD Simulations of Turbocharged Engines under Transient Load Conditions

2018-04-03
2018-01-0170
The simulation of transient engine behavior has gained importance mainly due to stringent emission limits, measured under real driving conditions and the concurrently demanded vehicle performance. This is especially true for turbocharged engines, as the coupling of the combustion engine and the turbocharger forms a complex system in which the components influence each other remarkably causing, for example, the well-known turbo lag. Because of this strong interaction, during a transient load case, the components should not be analyzed separately since they mutually determine their boundary conditions. Three-dimensional computational fluid dynamics (3D-CFD) simulations of full engines in stationary operating points have become practicable several years ago and will remain a valuable tool in virtual engine development; however, the next logical step is to extend this approach into the transient domain.
Journal Article

Novel Transient Wall Heat Transfer Approach for the Start-up of SI Engines with Gasoline Direct Injection

2010-04-12
2010-01-1270
The introduction of CO₂-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emissions limits require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. There, the current models for calculation of the transient wall heat fluxes were found to be misleading. But with a fraction of nearly 45% of the burned fuel energy, the wall heat is very important for the calculation of energy balance and for the combustion process analysis.
Journal Article

Some Useful Additions to Calculate the Wall Heat Losses in Real Cycle Simulations

2012-04-16
2012-01-0673
More than 20 years after the first presentation of the heat transfer equation according to Bargende [1,2], it is time to introduce some useful additions and enhancements, with respect to new and advanced combustion principles like diesel- and gasoline- homogeneous charge compression ignition (HCCI). In the existing heat transfer equation according to Bargende the calculation of the actual combustion chamber surface area is formulated in accordance with the work of Hohenberg. Hohenberg found experimentally that in the piston top land only about 20-30% of the wall heat flux values from the combustion chamber are transferred to the liner and piston wall. Hohenberg explained this phenomenon that is caused by lower gas temperature and convection level in charge within the piston top land volume. The formulation just adds the existing piston top land surface area multiplied by a specified factor to the surface of the combustion chamber.
Technical Paper

Fundamentals of Pressure Trace Analysis for Gasoline Engines with Homogeneous Charge Compression Ignition

2010-10-25
2010-01-2182
Regarding further development of gasoline engines several new technologies are investigated in order to diminish pollutant emissions and particularly fuel consumption. The Homogeneous Charge Compression Ignition (HCCI) seems to be a promising way to reach these targets. Therefore, in the past years there had been a lot of experimental efforts in this field of combustion system engineering. Negative valve overlap with pilot injection before pumping top dead center (PTDC) and an “intermediate” compression and combustion during PTDC, followed by the main injection after PTDC, is one way to realize and to proper control a HCCI operation. For conventional CI and SI combustion the pressure trace analysis (PTA) is a powerful and widely used tool to analyse, understand and optimize the combustion process.
Technical Paper

Improvement of Engine Heat-Transfer Calculation in the Three-Dimensional Simulation Using a Phenomenological Heat-Transfer Model

2001-09-24
2001-01-3601
Improvement of heat-transfer calculation for SI-engines in the three-dimensional simulation has been achieved and widely been tested by using a phenomenological heat-transfer model. The model is based on the local application of an improved Re-Nu-correlation (dimensional analysis) proposed by Bargende [1]. This approach takes advantage of long experience in engine heat transfer modeling in the real working process analysis. The results of numerous simulations of different engine meshes show that the proposed heat-transfer model enables to calculate the overall as well as the local heat transfer in good agreement with both real working process analyses and experimental investigations. The influence of the mesh structure has also been remarkably reduced and compared to the standard wall function approach, no additional CPU-time is required.
Technical Paper

Direct Coupled 1D/3D-CFD-Computation (GT-Power/Star-CD) of the Flow in the Switch-Over Intake System of an 8-Cylinder SI Engine with External Exhaust Gas Recirculation

2002-03-04
2002-01-0901
The setting of boundary conditions on the boundaries of a 3D-CFD grid under certain conditions is a source of significant errors. The latter might occur by numerical reflection of pressure waves on the boundary or by incorrect setting of the chemical composition of the gas mixture in recirculation zones (e.g. in the intake manifold of internal combustion engines when the burnt gas from the cylinder enters the intake manifold and passes the boundary of the CDF-grid. When the flow direction is changed the setting of pure new charge on the boundary leads to errors). This type of problems should receive attention in operation points with low engine speed and load. The direct coupling of a 3D-CFD program (Star-CD) with a 1D-CFD program (GT-Power) is done by integration of the 3D-grid of the engine component as a „CFD-component” of the 1D computational model of a complete engine.
Technical Paper

Simulation of the Post-Oxidation in Turbo Charged SI-DI-Engines

2011-04-12
2011-01-0373
Turbocharged SI-DI-engines in combination with a reduction of engine displacement (“Downsizing”) offer the possibility to remarkably reduce the overall fuel consumption. In charged mode it is possible to scavenge fresh unburnt air into the exhaust system if a positive slope during the overlap phase of the gas exchange occurs. The matching of the turbo system in SI-engines always causes a trade-off between low-end torque and high power output. The higher mass flow at low engine speeds of an engine using scavenging allows a partial solution of this trade-off. Thus, higher downsizing grades and fuel consumption reduction potential can be obtained. Through scavenging the global fuel to air ratio deviates from the local in-cylinder fuel to air ratio. It is possible to use a rich in-cylinder fuel to air ratio, whereas the global fuel to air ratio remains stochiometrical. This could be very beneficial to reduce the effect of catalytic aging on the one hand and engine knock on the other hand.
Technical Paper

Investigation of the Gas Exchange (Scavenging) on a Single-Scroll Turbocharged Four Cylinder GDI Engine

2016-04-05
2016-01-1024
For scavenging the combustion chamber during the gas exchange, a temporary positive pressure gradient between the intake and the exhaust is required. On a single-scroll turbocharged four cylinder engine, the positive pressure gradient is not realized by the spatial separation of the exhaust manifold (twin-scroll), but by the use of suitable short exhaust valve opening times. In order to avoid any influence of the following firing cylinder onto the ongoing scavenging process, the valve opening time has to be shorter than 180 °CA. Such a short valve opening time has both, a strong influence on the gas exchange at the low-end torque and at the maximum engine power. This paper analyzes a phenomenon, which occurs due to short exhaust valve opening durations and late valve timings: A repeated compression of the burned cylinder charge after the bottom dead center, referred to as “recompression” in this paper.
Technical Paper

Wall Heat Transfer in a Multi-Link Extended Expansion SI-Engine

2017-09-04
2017-24-0016
The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
Technical Paper

Resonance Charging Applied to a Turbo Charged Gasoline Engine for Transient Behavior Enhancement at Low Engine Speed

2017-09-04
2017-24-0146
Upcoming regulations and new technologies are challenging the internal combustion engine and increasing the pressure on car manufacturers to further reduce powertrain emissions. Indeed, RDE pushes engineering to keep low emissions not only at the bottom left of the engine map, but in the complete range of load and engine speeds. This means for gasoline engines that the strategy used to increase the low end torque and power by moving out of lambda one conditions is no longer sustainable. For instance scavenging, which helps to increase the enthalpy of the turbine at low engine speed cannot be applied and thus leads to a reduction in low-end torque. Similarly, enrichment to keep the exhaust temperature sustainable in the exhaust tract components cannot be applied any more. The proposed study aims to provide a solution to keep the low end torque while maintaining lambda at 1. The tuning of the air intake system helps to improve the volumetric efficiency using resonance charging effects.
Technical Paper

Numerical and Experimental Studies on Mixture Formation with an Outward-Opening Nozzle in a SI Engine with CNG-DI

2016-04-05
2016-01-0801
CNG direct injection is a promising technology to promote the acceptance of natural gas engines. Among the beneficial properties of CNG, like reduced pollutants and CO2 emissions, the direct injection contributes to a higher volumetric efficiency and thus to a better driveability, one of the most limiting drawbacks of today’s CNG vehicles. But such a combustion concept increases the demands on the injection system and mixture formation. Among other things it requires a much higher flow rate at low injection pressure. This can be only provided by an outward-opening nozzle due to its large cross-section. Nevertheless its hollow cone jet with a specific propagation behavior leads to an adverse fuel-air distribution especially at higher loads under scavenging conditions. This paper covers numerical and experimental analysis of CNG direct injection to understand its mixture formation.
Technical Paper

A Simulative Study for Post Oxidation During Scavenging on Turbo Charged SI Engines

2018-04-03
2018-01-0853
Fulfilling exhaust emissions regulations and meet customer performance needs mainly drive the current engine development. Turbocharging system plays a key role for that. Currently turbocharging should provide highest engine power density at high engine speed by also allowing a very responsive performance at low end. This represents a trade-off in turbocharger development. A large scaled turbine allows having moderate exhaust gas back pressure for peak power region, but leading to loss of torque in low engine speed. In the last years of engine development scavenging helped to get away a bit from this trade-off as it increases the turbine mass flow and also reduces cylinder internal residual gas at low engine speed. The mostly in-use lean strategy runs air fuel ratios of closed to stoichiometric mixture in cylinder and global (pre catalyst) of λ = 1.05 to l = 1.3. This will be out of the narrow air fuel ratio band of λ = 1 to ensure NOx conversion in the 3-way-catalyst.
Technical Paper

Investigation on Mixture Formation and Combustion Process in a CNG-Engine by Using a Fast Response 3D-CFD-Simulation

2004-10-25
2004-01-3004
The research institute FKFS in cooperation with the IVK Universität Stuttgart has recently presented QuickSim, a 3D-CFD-tool, that works integrated into the commercial 3D-CFD-code Star-CD. QuickSim has been developed to cover a vacancy in the market of simulation programs for engine development. The code introduces a new concept in the 3D-CFD-simulation of internal combustion engines (SI-Manifold-Injection and SI-GDI), that drastically reduces the CPU-time in comparison to a conventional 3D-CFD-simulation. QuickSim, as a 3D-CFD-tool, combines the advantages of local resolution of the fluid-dynamical field of internal combustion engines exactly like that provided by traditional 3D-CFD-simulations and the versatility and clearness of the real working-process analysis (WP) and of the full 1D-flow calculations. The CPU-time always remains in an acceptable range (few hours over a full operating cycle for a single-processor computing simulation).
Technical Paper

A Simulation Study of Optimal Integration of a Rankine Cycle Based Waste Heat Recovery System into the Cooling System of a Long-Haul Heavy Duty Truck

2018-09-10
2018-01-1779
As a promising solution to improve fuel efficiency of a long-haul heavy duty truck with diesel engine, organic Rankine cycle (ORC) based waste heat recovery system (WHR) by utilizing the exhaust gas from internal combustion engine has continuously drawn attention from automobile industry in recent years. The most attractive concept of ORC-based WHR system is the conversion of the thermal energy of exhaust gas recirculation (EGR) and exhaust gas from Tailpipe (EGT) to kinetic energy which is provided to the engine crankshaft. Due to a shift of the operating point of the engine by applying WHR system, the efficiency of the overall system increases and the fuel consumption reduces respectively. However, the integration of WHR system in truck is challenging by using engine cooling system as heat sink for Rankine cycle. The coolant mass flow rate influences strongly on the exhaust gas bypass which ensures a defined subcooling after condenser to avoid cavitation of pump.
Technical Paper

Experimental Investigation of Flame-Wall-Impingement and Near-Wall Combustion on the Piston Temperature of a Diesel Engine Using Instantaneous Surface Temperature Measurements

2018-09-10
2018-01-1782
The heat transfer process in a reciprocating engine is dominated by forced convection, which is drastically affected by mean flow, turbulence, flame propagation and its impingement on the combustion chamber walls. All these effects contribute to a transient heat flux, resulting in a fast-changing temporal and spatial temperature distribution at the surface of the combustion chamber walls. To quantify these changes in combustion chamber surface temperature, surface temperature measurements on the piston of a single cylinder diesel engine were taken. Therefore, thirteen fast-response thermocouples were installed in the piston surface. A wireless microwave telemetry system was used for data transmission out of the moving piston. A wide range of parameter studies were performed to determine the varying influences on the surface temperature of the piston.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

Dynamic Simulation of Hybrid Powertrains using Different Combustion Engine Models

2015-09-06
2015-24-2545
This study presents a comparison of different approaches for the simulation of HEV fuel consumption. For this purpose a detailed 1D-CFD model within an HEV drivetrain is compared to a ‘traditional’ map-based combustion engine model as well as different types of simplified engine models which are able to reduce computing time significantly while keeping the model accuracy at a high level. First, a simplified air path model (fast running model) is coupled with a quasi dimensional, predictive combustion model. In a further step of reducing the computation time, an alternative way of modeling the in cylinder processes was evaluated, by replacing the combustion model with a mean value model. For this approach, the most important influencing factors of the 1D-CFD air path model (temperature, pressure, A/F-ratio) are used as input values into neural nets, while the corresponding outputs are in turn used as feedback for the air path model.
X