Refine Your Search

Topic

Search Results

Journal Article

A New Tool to Perform Global Energy Balances in DI Diesel Engines

2014-04-01
2014-01-0665
The generalization of exhaust aftertreatment systems along with the growing awareness about climate change is leading to an increasing importance of the efficiency over other criteria during the design of reciprocating engines. Using experimental and theoretical tools to perform detailed global energy balance (GEB) of the engine is a key issue for assessing the potential of different strategies to reduce consumption. With the objective of improving the analysis of GEB, this paper describes a tool that allows calculating the detailed internal repartition of the fuel energy in DI Diesel engines. Starting from the instantaneous in-cylinder pressure, the tool is able to describe the different energy paths thanks to specific submodels for all the relevant subsystems.
Journal Article

General Procedure for the Determination of Heat Transfer Properties in Small Automotive Turbochargers

2014-10-13
2014-01-2857
These days many research efforts on internal combustion engines are centred on optimising turbocharger matching and performance on the engine. In the last years a number of studies have pointed out the strong effect on turbocharger behaviour of heat transfer phenomena. The main difficulty for taking into account these phenomena comes from the little information provided by turbocharger manufacturers. In this background, Original Engine Manufacturers (OEM) need general engineering tools able to provide reasonably precise results in predicting the mentioned heat transfer phenomena. Therefore, the purpose of this work is to provide a procedure, applicable to small automotive turbochargers, able to predict the heat transfer characteristics that can be used in a lumped 1D turbocharger heat transfer model. This model must be suitable to work coupled to whole-engine simulation codes (such as GT-Power or Ricardo WAVE) for being used in global engine models by the OEM.
Journal Article

Compact High-Pressure Intake Silencer with Multilayer Porous Material

2016-06-15
2016-01-1819
Intake noise has become one the main concerns in the design of highly-supercharged downsized engines, which are expected to play a significant role in the upcoming years. Apart from the low frequencies associated with engine breathing, in these engines other frequency bands are also relevant which are related to the turbocharger operation, and which may radiate from the high-pressure side from the compressor outlet to the charge air cooler. Medium frequencies may be controlled with the use of different typologies of resonators, but these are not so effective for relatively high frequencies. In this paper, the potential of the use of multi-layer porous materials to control those high frequencies is explored. The material sheets are located in the side chamber of an otherwise conventional resonator, thus providing a compact, lightweight and convenient arrangement.
Journal Article

A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency

2017-03-28
2017-01-0722
Growing awareness about CO2 emissions and their environmental implications are leading to an increase in the importance of thermal efficiency as criteria to design internal combustion engines (ICE). Heat transfer to the combustion chamber walls contributes to a decrease in the indicated efficiency. A strategy explored in this study to mitigate this efficiency loss is to promote low swirl conditions in the combustion chamber by using low swirl ratios. A decrease in swirl ratio leads to a reduction in heat transfer, but unfortunately, it can also lead to worsening of combustion development and a decrease in the gross indicated efficiency. Moreover, pumping work plays also an important role due to the effect of reduced intake restriction to generate the swirl motion. Current research evaluates the effect of a dedicated injection strategy to enhance combustion process when low swirl is used.
Journal Article

The 3Dcell Approach for the Acoustic Modeling of After-Treatment Devices

2011-09-11
2011-24-0215
In the last decades the continuously tightening limitations on pollutant emissions has led to an extensive adoption of after-treatment devices on the exhaust systems of modern internal combustion engines. While these devices are primarily introduced for reducing and controlling the emissions, they also play an important role influencing the wave motion inside the exhaust system and so affecting the acoustics and the performances of the engine. In this paper a novel approach is proposed for the modeling of two after-treatment devices: the catalyst and the Diesel Particulate Filter. The models are based on a fast quasi-3D approach, named 3Dcell, originally developed by the authors for the acoustic modeling of silencers. This approach allows to model the wave motion by solving the momentum equation along the three directions.
Journal Article

Importance of Mechanical Losses Modeling in the Performance Prediction of Radial Turbochargers under Pulsating Flow Conditions

2013-04-08
2013-01-0577
This work presents a study to characterize and quantify the mechanical losses in small automotive turbocharging systems. An experimental methodology to obtain the losses in the power transmission between the turbine and the compressor is presented. The experimental methodology is used during a measurement campaign of three different automotive turbochargers for petrol and diesel engines with displacements ranging from 1.2 l to 2.0 l and the results are presented. With this experimental data, a fast computational model is fitted and used to predict the behaviour of mechanical losses during stationary and pulsating flow conditions, showing good agreement with the experimental results. During pulsating flow conditions, the delay between compressor and turbine makes the mechanical efficiency fluctuate. These fluctuations are shown to be critical in order to predict the turbocharger behaviour.
Journal Article

Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications

2013-04-08
2013-01-0576
Nowadays turbocharging the internal combustion engine has become a key point in both the reduction of pollutant emissions and the improvement of engine performance. The matching between turbocharger and engine is difficult; some of the reasons are the highly unsteady flow and the variety of diabatic and off-design conditions the turbocharger works with. In present paper the importance of the heat transfer phenomena inside small automotive turbochargers will be analyzed. These phenomena will be studied from the point of view of internal heat transfer between turbine and compressor and with a one-dimensional approach. A series of tests in a gas stand, with steady and pulsating hot flow in the turbine side, will be modeled to show the good agreement in turbocharger enthalpies prediction. The goodness of the model will be also shown predicting turbine and compressor outlet temperatures.
Technical Paper

A Methodology for the Design of Engine Cooling Systems in Standalone Applications

2010-04-12
2010-01-0325
In this paper, a methodology for the design process of engine cooling systems is presented, which is based on the interaction among three programs: a code developed for radiator sizing and rating, a 3D commercial code used for the air circuit modeling, and a 1D commercial code used for the modeling and simulation of the complete engine cooling system. The aim of the developed methodology, in addition to ensure the system thermal balance, is the improvement of the design process of the cooling system itself, while shortening the development times, in non-automotive applications. An application to the design of a locomotive engine cooling system is presented. The system designed has been assembled and tested, showing the validity of the methodology, as well as the compliance of the designed system with the initially specified thermo-hydraulic constraints and requirements.
Technical Paper

Wavelet Transform applied to Combustion Noise Analysis in High-speed DI Diesel Engines

2001-04-30
2001-01-1545
Traditionally, combustion noise in Diesel engines has been quantified by means of a global noise level determined in many cases through the estimation of the attenuation curve of the block using the traditional discrete Fourier transform technique. In this work, the wavelet transform is used to establish a more reliable correlation between in-cylinder pressure (sources) and noise (effect) during the combustion of a new generation 2 liter DI Diesel engine. Then, in a qualitative sense, the contribution of each source intrinsic to the combustion process is determined for four engine operating conditions and two injection laws. The results have shown high variations in both the in-cylinder pressure and noise power harmonics along the time, which indicates the non-stationary character of this process.
Technical Paper

Evaluation of EGR Effect on the Global Energy Balance of a High Speed DI Diesel Engine

2016-04-05
2016-01-0646
Regulated emissions and fuel consumption are the main constraints affecting internal combustion engine (ICE) design. Over the years, many techniques have been used with the aim of meeting these limitations. In particular, exhaust gas recirculation (EGR) has proved to be an invaluable solution to reduce NOx emissions in Diesel engines, becoming a widely used technique in production engines. However, its application has a direct effect on fuel consumption due to both the changes in the in-cylinder processes, affecting indicated efficiency, and also on the air management. An analysis, based on the engine Global Energy Balance, is presented to thoroughly assess the behavior of a HSDI Diesel engine under variable EGR conditions at different operating points. The tests have been carried out keeping constant the conditions at the IVC and the combustion centering.
Technical Paper

Linear Acoustic Modelling using 1-D Flow Systems which represent Complex 3-D Components

2011-05-17
2011-01-1524
Acoustics of automotive intake and exhaust systems have been modelled very successfully for many years using 1D gas dynamic simulations. These use pseudo 3D models to allow complex components to be constructed from simple building blocks. In recent years, tools have appeared that automate the construction of network models from 3D geometries of intake and exhaust components. Using these tools, concurrent noise and performance predictions are a core part of most engine development programmes. However, there is still much interest in the more traditional field of linear acoustics: analysing the acoustic behaviour of isolated components or predicting radiated noise using a linear source. Existing approaches break the intake and exhaust system down into a set of components, each with known acoustic properties. They are then connected together to create a network that replicates the donor non-linear model.
Technical Paper

Pressure Loss Characterisation of Perforated Ducts

1998-02-23
980282
Perforated ducts are present in most designs of exhaust mufflers, due to their convenient sound attenuation properties. While suitable tools are available for the estimation of this attenuation, accounting for the influence on attenuation of the perforated ducts for different arrangements, a similar tool but related to the back-pressure generated by mufflers containing perforated ducts is not available. In this paper, the basis for such a tool are set by defining a suitable characterisation of perforated pipes that may allow for the consideration of the influence of a particular perforated duct on the back pressure generated by a given muffler. The results obtained have been validated in a particularly simple case, and the results confirm the feasibility of the proposed methodology, while suggesting possible future improvements.
Technical Paper

Development and Validation of a Submodel for Thermal Exchanges in the Hydraulic Circuits of a Global Engine Model

2018-04-03
2018-01-0160
To face the current challenges of the automotive industry, there is a need for computational models capable to simulate the engine behavior under low-temperature and low-pressure conditions. Internal combustion engines are complex and have interconnected systems where many processes take place and influence each other. Thus, a global approach to engine simulation is suitable to study the entire engine performance. The circuits that distribute the hydraulic fluids -liquid fuels, coolants and lubricants- are critical subsystems of the engine. This work presents a 0D model which was developed and set up to make possible the simulation of hydraulic circuits in a global engine model. The model is capable of simulating flow and pressure distributions as well as heat transfer processes in a circuit.
Technical Paper

Hybrid Linear/Nonlinear Method for Exhaust Noise Prediction

1995-02-01
950545
The use of computer calculation tools in order to reduce the cost of the development of optimized exhaust systems has turned out to be a generalized industrial practice. Therefore, considerable efforts are devoted to the development of suitable calculation tools, which are representative of the real phenomena taking place in the exhaust systems. In the present paper, the results of the application of a hybrid linear/nonlinear calculation method to the prediction of the exhaust noise radiated by I.C. engines are presented. First, a brief description of the method is given. Then, comparison is shown between the results of the calculation and experimental measurements, both for in-duct pressure and for noise radiated. The agreement obtained indicates that this method may be used as a design tool in the frame of the new methodologies presently arising in exhaust system development.
Technical Paper

A Theoretical and Experimental Study of the Behaviour of Concentric Perforated Duct Automotive Mufflers

1996-02-01
960300
Concentric perforated duct mufflers are broadly used when designing automotive front mufflers because of their acceptable acoustic performance and their low backpressure. In the frame of the design methodologies presently used, suitable theoretical models are needed in order to estimate this performance without the need to build prototypes and perform experimental tests. A lot of work has been performed in this sense; nevertheless, there remains a reasonable doubt that the results obtained with purely linear models are representative of the muffler behaviour under actual engine conditions. In the present paper, a two dimensional finite element model is used in order to compute the transmission loss of several concentric perforated duct mufflers, and the results are compared with experimental measurements performed with a modified version of the impulse method that allows for the use of high amplitude pressure pulses as excitation.
Technical Paper

A Numerical Study of the Behaviour of a Turbocharged Diesel Engine as a Noise Source

1997-02-24
970836
In this paper, a numerical model is used to study the influence of several relevant parameters on the behaviour of a turbocharged Diesel engine as an exhaust noise source, with two main objectives: first, determine if it is possible to reduce exhaust noise at the source itself, thus simplifying the task of exhaust system design; and secondly, to asses up to which extent simple linear source models may be used to predict exhaust noise in these engines. The results obtained indicate that, on the one hand, exhaust noise is sensitive to the variation of certain engine design parameters and, on the other hand, that for certain running conditions simple source models may give an acceptable estimation of the actual engine behaviour as a noise source.
Technical Paper

The Use of Transfer Matrix for the Design of Interferencial Systems in Exhaust Mufflers

2000-03-06
2000-01-0728
One of the main problems in the design of exhaust silencers is the attenuation of low frequency noise. At these frequencies is where the influence of the engine has more importance; moreover, low frequency noise has the possibility of interaction with the mechanical resonances of the exhaust line, producing additional noise and vibration highly disturbing. A suitable solution to this problem is the use of the interferencial behaviour between two acoustic parallel paths, which produces high attenuation at a given frequency associated with the difference between the acoustic lengths of both paths. In the present paper, a general expression for the 4-pole transfer matrix of an interferencial system with two arbitrary branches is presented, which is applied to a simple but realistic exhaust silencer. Results are compared with the transmission loss measured with a modified impulse method, with good agreement between the model and the measurements.
Technical Paper

On the Influence of Manifold Geometry on Exhaust Noise

1999-05-17
1999-01-1650
The influence of manifold geometry on exhaust noise is studied. First, a linear description of the problem is presented, so that potential relevant factors may be identified. Then a full non-linear simulation is performed, for a simple geometry, in order to check, in more realistic conditions, the ideas obtained from the linear theory. The results indicate that, although some qualitative trends may be obtained from the linear analysis, the role of back-reaction of the manifold on the engine (a non-linear coupling effect) may be determinant.
Technical Paper

Numerical Estimation of Wiebe Function Parameters Using Artificial Neural Networks in SI Engine

2021-04-06
2021-01-0379
In modeling an Internal Combustion Engine, the combustion sub-model plays a critical role in the overall simulation of the engine as it provides the Mass Fraction Burned (MFB). Analytically, the Heat Release Rate (HRR) can be obtained using the Wiebe function, which is nothing more than a mathematical formulation of the MFB. The mentioned function depends on the following four parameters: efficiency parameter, shape factor, crankshaft angle, and duration of the combustion. In this way, the Wiebe function can be adjusted to experimentally measured values of the mass fraction burned at various operating points using a least-squares regression, and thus obtaining specific values for the unknown parameters. Nevertheless, the main drawback of this approach is the requirement of testing the engine at a given engine load/speed condition. Furthermore, the main objective of this study is to propose a predictive model of the Wiebe parameters for any operating point of the tested SI engine.
Technical Paper

On the Design of Heat Exchangers for Altitude Simulators

2021-04-06
2021-01-0388
Altitude simulators for internal combustion engines are broadly used in order to simulate different atmospheric pressure and temperatures on a test bench. One of the main problems of these devices is their outlet temperature and in order to control it, at least one heat exchanger is needed. A methodology to define, select and analyses the best heat exchanger that fulfill the requirements is presented. The methodology combines CFD and 0D models with experimental test. The combination of these tools allows to adjust both the 0D and the CFD models. The adjusted 0D model will be used to perform parametric analysis that will help to select the best geometrical combinations considering heat transfer and pressure losses while the CFD model will help to find possible local deficiencies on the designed Heat Exchanger and, therefore, try to improve it.
X