Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Model Based Engine Control Development and Hardware-in-the-Loop Testing for the EcoCAR Advanced Vehicle Competition

2011-04-12
2011-01-1297
When developing a new engine control strategy, some of the important issues are cost, resource minimization, and quality improvement. This paper outlines how a model based approach was used to develop an engine control strategy for an Extended Range Electric Vehicle (EREV). The outlined approach allowed the development team to minimize the required number of experiments and to complete much of the control development and calibration before implementing the control strategy in the vehicle. It will be shown how models of different fidelity, from map-based models, to mean value models, to 1-D gas dynamics models were generated and used to develop the engine control system. The application of real time capable models for Hardware-in-the-Loop testing will also be shown.
Technical Paper

Improving Fuel Economy of Thermostatic Control for a Series Plugin-Hybrid Electric Vehicle Using Driver Prediction

2016-04-05
2016-01-1248
This study investigates using driver prediction to anticipate energy usage over a 160-meter look-ahead distance for a series, plug-in, hybrid-electric vehicle to improve conventional thermostatic powertrain control. Driver prediction algorithms utilize a hidden Markov model to predict route and a regression tree to predict speed over the route. Anticipated energy consumption is calculated by integrating force vectors over the look-ahead distance using the predicted incline slope and vehicle speed. Thermostatic powertrain control is improved by supplementing energy produced by the series generator with regenerative braking during events where anticipated energy consumption is negative, typically associated with declines or decelerations.
Technical Paper

A Physically-Based, Lumped-Parameter Model of an Electrically-Heated Three-Way Catalytic Converter

2012-04-16
2012-01-1240
The impact of cold-start emissions is well known on conventional and hybrid electric vehicles. Plug-in electric vehicles offer a unique challenge in that there are opportunities for prolonged engine-off conditions which can lead to catalyst cooling and elevated emissions on engine re-start. This research investigates the development and validation of a system for controlling emissions under these conditions, with an emphasis on a catalytic converter model used for design and analysis. The model is a one-dimensional, lumped-parameter model of a three-way catalytic converter developed in Matlab/Simulink. The catalyst is divided into discrete, axial elements and each discrete element contains states for the temperatures of the gas, substrate, and can wall. Heat transfer mechanisms are modeled from physics-based equations.
Technical Paper

Refinement and Testing of an E85 Split Parallel EREV

2012-04-16
2012-01-1196
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2009 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). Following GM's Vehicle Development Process (VDP), HEVT established team goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in extended range hybrid electric vehicle. The competition requires participating teams to re-engineer a stock crossover utility vehicle donated by GM. The result of this design process is an Extended Range Electric Vehicle (EREV) that uses grid electric energy and E85 fuel for propulsion. The vehicle design has achieved an SAE J1711 utility factor corrected fuel consumption of 2.9 L(ge)/100 km (82 mpgge) with an all-electric range of 87 km (54 miles) [1].
Technical Paper

Hybrid Architecture Selection to Reduce Emissions and Petroleum Energy Consumption

2012-04-16
2012-01-1195
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012 - 2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption, WTW greenhouse gas and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP), HEVT will design, build, and refine an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle. In year 1 of the competition, HEVT has designed a powertrain to meet and exceed the goals of the competition.
Technical Paper

VTool: A Method for Predicting and Understanding the Energy Flow and Losses in Advanced Vehicle Powertrains

2013-04-08
2013-01-0543
A crucial step to designing and building more efficient vehicles is modeling powertrain energy consumption. While accurate modeling is indeed key to effective and efficient design, a fundamental understanding of the powertrain and auxiliary systems that contribute to the energy consumption of a vehicle is equally as important. This paper presents a methodology that has been packaged into a tool, called VTool (short for Vehicle Tool), which can be used to estimate the energy consumption of a vehicle powertrain. The method is intrinsically designed to foster understanding of the vehicle powertrain as it relates to energy consumption and losses while still providing reasonably accurate results. This paper briefly explains the methodology of VTool and demonstrates the capability of VTool as a design tool by presenting 4 example exercises.
Technical Paper

Development of a Gear Backlash Compensator for Electric Machines in P0-P4 Parallel Hybrid Drivelines

2023-04-11
2023-01-0454
Backlash is the movement between the gear teeth that allows them to mate without binding. Backlash can cause large torque fluctuations in vehicle powertrains when the input torque changes direction. These fluctuations cause a jerk and shuddering, which negatively affects drive quality. Input torque frequently changes direction in electric vehicles due to regenerative braking. Limiting zero crossings is an option for better drive quality; however, this leads to decreased vehicle efficiency. Because of this, modulating the torque through the backlash region is preferred, yet, if done poorly, it can result in sluggish torque response. This paper proposes a torque-shaping algorithm for an electric motor and gear/differential system to reduce backlash in electric vehicles. The control algorithm modulates the commanded torque’s rate of change based on the vehicle speed and zero-crossing torque.
Technical Paper

Design and Simulation of Lithium-Ion Battery Thermal Management System for Mild Hybrid Vehicle Application

2015-04-14
2015-01-1230
It is well known that thermal management is a key factor in design and performance analysis of Lithium-ion (Li-ion) battery, which is widely adopted for hybrid and electric vehicles. In this paper, an air cooled battery thermal management system design has been proposed and analyzed for mild hybrid vehicle application. Computational Fluid Dynamics (CFD) analysis was performed using CD-adapco's STAR-CCM+ solver and Battery Simulation Module (BMS) application to predict the temperature distribution within a module comprised of twelve 40Ah Superior Lithium Polymer Battery (SLPB) cells connected in series. The cells are cooled by air through aluminum cooling plate sandwiched in-between every pair of cells. The cooling plate has extended the cooling surface area exposed to cooling air flow. Cell level electrical and thermal simulation results were validated against experimental measurements.
Technical Paper

Efficient Thermal Modeling and Integrated Control Strategy of Powertrain for a Parallel Hybrid EcoCAR2 Competition Vehicle

2014-04-01
2014-01-1927
Hybrid electric vehicle (HEV) is one of the most highly pursued technologies for improving energy efficiency while reducing harmful emissions. Thermal modeling and control play an ever increasing role with HEV design and development for achieving the objective of improving efficiency, and as a result of additional thermal loading from electric powertrain components such as electric motor, motor controller and battery pack. Furthermore, the inherent dual powertrains require the design and analysis of not only the optimal operating temperatures but also control and energy management strategies to optimize the dynamic interactions among various components. This paper presents a complete development process and simulation results for an efficient modeling approach with integrated control strategy for the thermal management of plug-in HEV in parallel-through-the road (PTTR) architecture using a flexible-fuel engine running E85 and a battery pack as the energy storage system (ESS).
Technical Paper

ESS Design Process Overview and Key Outcomes of Year Two of EcoCAR 2: Plugging in to the Future

2014-04-01
2014-01-1922
EcoCAR 2: Plugging in to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 30 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The EcoCAR 2 VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Optimization for Plug-In Vehicles - Waste Heat Recovery from the Electric Traction Motor

2014-04-01
2014-01-1921
The Wayne State University (WSU) EcoCAR2 student team is investigating powertrain optimizations as a part of their participation in the EcoCAR2 design competition for the conversion of a 2013 Chevrolet Malibu into a plug-in hybrid. EcoCAR2 is the current three-year Department of Energy (DoE) Advanced Vehicle Technical Competition (AVTC) for 15 select university student teams competing on designing, building, and then optimizing their Plug-In Hybrid conversions of GM donated vehicles. WSU's powertrain design provides for approximately 56-64 km (35-40 miles) of electric driving before the Internal Combustion Engine (ICE) powertrain is needed. When the ICE is started, the ICE traditionally goes through a cold start with the engine, transmission, and final drive all at ambient temperature. The ICE powertrain components are most efficient when warmed up to their normal operating temperature, typically around 90-100 °C.
Technical Paper

Engine Efficiency and Emissions Improvement in a Parallel-Series PHEV

2023-10-12
2023-01-5072
While there is a continued push toward mass adoption of electric vehicles globally, internal combustion engines seem posed to continue to play a key role in the mobility industry even as electrified powertrains continue to increase in market share. For internal combustion engines to continue to propel people and goods, engine technologies need to continuously improve in both efficiency and emissions. This paper will explore six technologies to increase the efficiency and reduce the emissions output of an engine in a plug-in hybrid-electric vehicle (PHEV). The technologies employed on this prototype vehicle include deceleration fuel cutoff, start–stop, increasing the mean engine operating temperature, preheating the engine oil, implementing an electrically heated catalyst, and air–fuel ratio control. Each of these technologies have been well studied and have demonstrated robustness through decades of deployments on road.
Technical Paper

Implementation of Adaptive Equivalent Consumption Minimization Strategy

2024-04-09
2024-01-2772
Electrification of vehicles is an important step towards making mobility more sustainable and carbon-free. Hybrid electric vehicles use an electric machine with an on-board energy storage system, in some form to provide additional torque and reduce the power requirement from the internal combustion engine. It is important to control and optimize this power source split between the engine and electric machine to make the best use of the system. This paper showcases an implementation of the Adaptive Equivalent Consumption Minimization Strategy (A-ECMS) with minimization in real-time in the dSPACE MicroAutobox II as the Hybrid Supervisory Controller (HSC). While the concept of A-ECMS has been well established for many years, there are no published papers that present results obtained in a production vehicle suitably modified from conventional to hybrid electric propulsion including real world testing as well as testing on regulatory cycles.
X