Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Development of a 3rd Generation SCR NH3-Direct Dosing System for Highly Efficient DeNOx

2012-06-18
In this project funded by the Bayerische Forschungsstiftung two fundamental investigations had been carried out: first a new N-rich liquid ammonia precursor solution based on guanidine salts had been completely characterized and secondly a new type of side-flow reactor for the controlled catalytic decomposition of aqueous NH3 precursor to ammonia gas has been designed, applied and tested in a 3 liter passenger car diesel engine. Guanidine salts came into the focus due to the fact of a high nitrogen-content derivate of urea (figure 1). Specially guanidinium formate has shown extraordinary solubility in water (more than 6 kg per 1 liter water at room temperature) and therefore a possible high ammonia potential per liter solution compared to the classical 32.5% aqueous urea solution (AUS32) standardized in ISO 22241 and known as DEF (diesel emission fluid), ARLA32 or AdBlue®. Additionally a guanidine based formulation could be realized with high freezing stability down to almost ?30 °C (?
Journal Article

ERRATUM: Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388.01
1. On page 111, the authors have described a method to assess driver distraction. In this method, participants maintained a white square size on a forward display by using a game gas pedal of like in car-following situation. The size of the white square is determined by calculating the distance to a virtual lead vehicle. The formulas to correct are used to explain variation of acceleration of the virtual lead vehicle. The authors inadvertently incorporated old formulas they had used previously. In the experiments discussed in the article, the corrected formulas were used. Therefore, there is no change in the results. The following from the article:
Journal Article

Improving Hole Expansion Ratio by Parameter Adjustment in Abrasive Water Jet Operations for DP800

2018-09-17
Abstract The use of Abrasive Water Jet (AWJ) cutting technology can improve the edge stretchability in sheet metal forming. The advances in technology have allowed significant increases in working speeds and pressures, reducing the AWJ operation cost. The main objective of this work was to determine the effect of selected AWJ cutting parameters on the Hole Expansion Ratio (HER) for a DP800 (Dual-Phase) Advanced High-Strength Steel (AHSS) with s0 = 1.2 mm by using a fractional factorial design of experiments for the Hole Expansion Tests (HET). Additionally, the surface roughness and residual stresses were measured on the holes looking for a possible relation between them and the measured HER. A deep drawing quality steel DC06 with s0 = 1.0 mm was used for reference. The fracture occurrence was captured by high-speed cameras and by Acoustic Emissions (AE) in order to compare both methods.
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Journal Article

Reconstruction of Time-Resolved Vehicle Emissions Measurements by Deconvolution

2009-04-20
2009-01-1513
A thorough understanding of vehicle exhaust aftertreatment system performance requires time-resolved emissions measurements that accurately follow driving transients, and that are correctly time-aligned with exhaust temperature and flow measurements. The transient response of conventional gas analyzers is characterized by both a time delay and an attenuation of high-frequency signal components. The distortion that this imposes on transient emissions measurements causes significant errors in instantaneous calculations of aftertreatment system efficiency, and thus in modal mass analysis. This creates difficulties in mathematical modeling of emissions system performance and in optimization of powertrain control strategies, leading to suboptimal aftertreatment system designs. A mathematical method is presented which improves the response time of emissions measurements. This begins with development of a model of gas transport and mixing within the sampling and measurement system.
Journal Article

Development of the Second Generation International Space Station (ISS) Total Organic Carbon Analyzer (TOCA)

2009-07-12
2009-01-2393
The second generation International Space Station (ISS) Total Organic Carbon Analyzer's (TOCA) function is to monitor concentrations of Total Organic Carbon (TOC) in ISS water samples. TOC is one measurement that provides a general indication of overall water quality by indicating the potential presence of hazardous chemicals. The data generated from the TOCA is used as a hazard control to assess the quality of the reclaimed and stored water supplies on-orbit and their suitability for crew consumption. This paper details the unique ISS Program requirements, the design of the ISS TOCA, and a brief description of the on-orbit concept-of-operations. The TOCA schematic will be discussed in detail along with specific information regarding key components.
Journal Article

Solar Cycle and Seasonal Variability of the Martian Thermosphere-Ionosphere and Associated Impacts upon Atmospheric Escape

2009-07-12
2009-01-2396
A growing body of evidence supports an ancient Mars having a milder, wetter climate, suggesting that its atmosphere was once more substantial than it is today. The fate of the lost atmosphere and water is a major unanswered question. Is the “lost” water sequestered in the crust at all latitudes, or did much of it escape to space? While available measurements and theoretical studies suggest that a number of atmospheric escape processes are at work today, little is known about their efficacy, including temporal variations driven by the solar cycle and Mars seasons. Selected 3-D simulations are presented and illustrate the coupling between the thermosphere-ionosphere system and the exosphere leading to predictions of the oxygen corona and hot oxygen escape (a major component of atmospheric loss for present day Mars).
Journal Article

Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

2009-07-12
2009-01-2371
The Space Suit Water Membrane Evaporator (SWME) is a baseline heat rejection technology that was selected to develop the Constellation Program lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element Portable Life Support Subsystem to provide cooling to the thermal loop via water evaporation to the vacuum of space. Previous work [1] described the test methodology and planning that are entailed in comparing the test performance of three commercially available HoFi materials as alternatives to the sheet membrane prototype for SWME: (1) porous hydrophobic polypropylene, (2) porous hydrophobic polysulfone, and (3) ion exchange through nonporous hydrophilic-modified Nafion®.
Journal Article

Development and Testing of a Sorbent-Based Atmosphere Revitalization System 2008/2009

2009-07-12
2009-01-2445
The design and evaluation of a Vacuum-Swing Adsorption (VSA) system to remove metabolic water and metabolic carbon dioxide from a spacecraft atmosphere is presented. The approach for Orion and Altair is a VSA system that removes not only 100 percent of the metabolic CO2 from the atmosphere, but also 100% of the metabolic water as well, a technology approach that has not been used in previous spacecraft life support systems. The design and development of an Orion Crew Exploration Vehicle Sorbent Based Atmosphere Revitalization system, including test articles, a facility test stand, and full-scale testing in late 2008 and early 2009 is discussed.
Journal Article

Improving the Measurement Accuracy of Water Partial Pressure Using the Major Constituent Analyzer

2009-07-12
2009-01-2432
The Major Constituent Analyzer (MCA) is a mass spectrometer based system that measures the major components of the International Space Station (ISS) atmosphere, including water. The measurement of water vapor has been difficult due to adsorption on various surfaces in the sample path, and has thus far been discounted in MCA atmosphere monitoring. This paper summarizes the results in identifying the primary source of the problem, the modeling being used to further elucidate the water surface adsorption/desorption process, and the proposed means available to provide a stable calibration and accurate measure of the water abundance.
Journal Article

Metering Characteristics of a Closed Center Load - Sensing Proportional Control Valve

2009-10-06
2009-01-2850
The investigation of the flow through the metering section of hydraulic components plays a fundamental role in the design and optimization processes. In this paper the flow through a closed center directional control valve for load -sensing application is studied by means of a multidimensional CFD approach. In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. A cavitation model based on a barotropic equation of state and homogeneous equilibrium assumption, including gas absorption and dissolution in the liquid medium, is adopted and coupled to a two equation turbulence approach. Both direct and inverse flows through the metering section of the control valve are investigated, and the differences in terms of fluid - dynamics behavior are addressed In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated and compared.
Journal Article

Virtual Multi-Cylinder Engine Transient Test System

2009-09-13
2009-24-0106
Researchers at the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison have developed a transient test system for single-cylinder engines that accurately replicates the dynamics of a multi-cylinder engine. The overall system can perform very rapid transients in excess of 10,000 rpm/second, and also replicates the rotational dynamics, intake gas dynamics, and heat transfer dynamics of a multi-cylinder engine. Testing results using this system accurately represent what would be found in the multi-cylinder engine counterpart. Therefore, engine developments can be refined to a much greater degree at lower cost, and these changes directly incorporated in the multi-cylinder engine with minimal modification. More importantly, various standardized emission tests such as the cold-start, FTP or ETC, can be run on this single-cylinder engine.
Journal Article

Experimental Investigation of the Benefits of Cooled and Extra-cooled Low-Pressure EGR on a Light Duty Diesel Engine Performance

2009-09-13
2009-24-0126
The present paper describes an experimental study on the application of a Low Pressure EGR system, equipped with an high efficiency cooler, to a LD diesel engine operating with both conventional combustion and PCCI mode. The research activity is aimed to carry out an analysis of the potentiality of the cooling (with engine water at 90°C) and super-cooling (with external water at 20°C) of the low pressure EGR flow gas on the simultaneous reduction of fuel consumption and pollutant emissions. The effects were evaluated running the engine with diesel conventional combustion and PCCI mode in several engine operating points. The employed engine was a 4-cyliders LD CR diesel engine of two liters of displacement at the state of art of the current engine technology. The overall results identified benefits on both the fuel consumption and emissions with the use of a low pressure EGR system with respect to the “classical” high pressure EGR one.
Journal Article

Evaluation of ANITA Air Monitoring on the International Space Station

2009-07-12
2009-01-2520
ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics, with high time resolution, in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarises the results of ANITA's air analyses and compares results to other measurements acquired on ISS during the operational period.
Journal Article

Counter-Flow Silica-Titania Reactor for the Simultaneous Treatment of Air and Water Contaminated with VOCs

2009-07-12
2009-01-2524
The photocatalytic oxidation of VOCs was investigated using a novel countercurrent flow reactor designed to enable the treatment of toluene present in the gas and the aqueous phases simultaneously. The reactor was packed with silica-titania composites commingled with plastic pall rings. Using this mixed packing style was advantageous as it resulted in a higher UV penetration throughout the reactor. The average UV intensity in the reactor was determined to be 220 μW/g irradiated TiO2. It was found that under dry conditions, the STCs had a high adsorption capacity for toluene; however, this adsorption was completely hindered by the wetting of the STCs when the two phases were flowing simultaneously. The destruction of toluene in the aqueous phase was determined to follow a linear trend as a function of the contaminant concentration.
Journal Article

Unique Regeneration Steps for the Sorbent-Based Atmosphere Revitalization System Designed for CO2 and H2O Removal from Spacecraft Cabins

2009-07-12
2009-01-2532
An SBAR system for H2O and CO2 removal from spacecraft cabin air was studied both experimentally and theoretically. An emphasis was placed on its purgeless, deep vacuum regeneration step. Three evacuation steps were studied: 1) single ended depressurization (SED) through the feed end of the bed; 2) simultaneous dual ended depressurization (DED) through both ends of the bed; and 3) simultaneous triple ended depressurization (TED) through both ends of the bed and a port located at some axial position. TED resulted in a lower average bed pressure at the end of evacuation compared to DED, which, in turn caused more CO2 to be removed. An optimal third port location also existed. The use of TED should allow the SBAR bed size to be reduced.
Journal Article

Characterization of Palm Fiber for Development of Biocomposites Material for Automotive Industries

2010-10-05
2010-01-2029
The physical and optical properties viz., water absorption pattern, density, color and opacity of oil palm fiber-LLDPE composites were studied. The effect of fiber size, fiber loading and fiber treatment on the above parameters was also studied. Alkali treatment on fibers was done to reduce the hydrophilic nature of composites. It was found that the water absorption in most of the combinations followed typical fickian behavior. The rate of water absorption and swelling increased with fiber loading. However alkali treatment on fibers resulted in reduction of water absorption at higher fiber loading only and composites with higher fiber size exhibited higher water absorption. True density of oil palm fiber-LLDPE composites were in the range of 967-1177 kg m-₃, whereas the bulk density ranged from 942-1122 kg m-₃. The dielectric constant of the composite was in the range of 3.22 to 6.73.
X