Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Correlation Measures and Their Applications in Structural Dynamics and Data Analyses

2014-09-30
2014-01-2307
This paper reviews the correlation concepts and tools available, with the emphasis on their historical origins, mathematical properties and applications. Two of the most commonly used statistical correlation indicators, i.e., modal assurance criterion (MAC) for structural deformation pattern identification/correlation and the coefficient of determination (R2) for data correlation are investigated. The mathematical structure of R2 is critically examined, and the physical meanings and their implications are discussed. Based on the insights gained from these analyses, a data scatter measure and a dependency measure are proposed. The applications of the measures for both linear and nonlinear data are also discussed. Finally, several worked examples in vehicle dynamics analysis and statistical data analyses are provided to demonstrate the effectiveness of these concepts.
Journal Article

Durability/Reliability Analysis, Simulation, and Testing of a Thermal Regeneration Unit for Exhaust Emission Control Systems

2012-09-24
2012-01-1951
Durability and reliability performance is one of the most important concerns of a recently developed Thermal Regeneration Unit for Exhaust (T.R.U.E-Clean®) for exhaust emission control. Like other ground vehicle systems, the T.R.U.E-Clean® system experiences cyclic loadings due to road vibrations leading to fatigue failure over time. Creep and oxidation cause damage at high temperature conditions which further shortens the life of the system and makes fatigue life assessment even more complex. Great efforts have been made to develop the ability to accurately and quickly assess the durability/reliability of the system in the early development stage. However, reliable and validated simplified engineering methods with rigorous mathematical and physical bases are still urgently needed to accurately manage the margin of safety and decrease the cost, whereas iterative testing is expensive and time consuming.
Journal Article

High-Temperature Life Assessment of Exhaust Components and the Procedure for Accelerated Durability and Reliability Testing

2012-09-24
2012-01-2058
Fatigue, creep, oxidation, or their combinations have long been recognized as the principal failure mechanisms in many high-temperature applications such as exhaust manifolds and thermal regeneration units used in commercial vehicle aftertreatment systems. Depending on the specific materials, loading, and temperature levels, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep-fatigue, fatigue-oxidation, creep-fatigue-oxidation. Several multiple failure mechanisms based material damage models have been developed, and products to resist these failure mechanisms have been designed and produced. However, one of the key challenges posed to design engineers is to find a way to accelerate the durability and reliability tests of auto exhaust in component and system levels and to validate the product design within development cycle to satisfy customer and market's requirements.
Technical Paper

Development of Lightweight Hanger Rods for Vehicle Exhaust Applications

2017-03-28
2017-01-1709
Recent stringent government regulations on emission control and fuel economy drive the vehicles and their associated components and systems to the direction of lighter weight. However, the achieved lightweight must not be obtained by sacrificing other important performance requirements such as manufacturability, strength, durability, reliability, safety, noise, vibration and harshness (NVH). Additionally, cost is always a dominating factor in the lightweight design of automotive products. Therefore, a successful lightweight design can only be accomplished by better understanding the performance requirements, the potentials and limitations of the designed products, and by balancing many conflicting design parameters. The combined knowledge-based design optimization procedures and, inevitably, some trial-and-error design iterations are the practical approaches that should be adopted in the lightweight design for the automotive applications.
Technical Paper

Potential Failure Modes and Accelerating Test Strategy of Burner

2012-04-16
2012-01-0523
Driven by diesel engine emission regulation, more emission aftertretment products have been under development by Tenneco to address the Particular Matter (PM) and NOx reduction needs. The T.R.U.E. (Thermal Regeneration Unit for Exhaust) Clean active thermal management system is one of the examples to reduce PM. The system is designed to increase exhaust temperatures for DPF (Diesel Particulate Filter) regeneration. This product is exposed to high temperature and high oxidation. Therefore, thermal fatigue, creep, oxidation and the interaction become critical mechanism to be considered for its durability. One of the key challenges to validate this product is to find a way of accelerated testing for thermal, creep, and oxidation as well as for vibration. In this paper, accelerated durability test strategy for high temperature device like T.R.U.E Clean is addressed.
Technical Paper

Characterization and Ranking of Materials for Exhaust Systems Under Thermal-Cycling Condition

2013-04-08
2013-01-0512
There is a broad range of material choices for on-road and off-road exhaust systems. The final selection of the materials depends on the balance of engineering performance of the materials and the cost. Thermal-cycling resistance of exhaust materials is an extremely important criterion for the long-term durability and reliability performance of very high temperature exhaust components and systems. To optimize the thermal-cycling resistance and cost of those materials, a selection matrix must be established. Several material evaluation and selection matrices are already available, however, these are not sufficient to meet the industry needs. The current procedure of material selection is essentially based on the trial-and-error approach, which is not efficient in the current market environment. In this paper, a general rational approach for thermal-cycling resistance characterization and ranking is demonstrated.
Technical Paper

Corrosion-Fatigue Modeling and Materials Performance Ranking

2018-04-03
2018-01-1409
Corrosion-fatigue (CF) and stress corrosion cracking (SCC) have long been recognized as the major degradation and failure mechanisms of engineering materials under combined mechanical loading and corrosive environments. How to model and characterize these failure phenomena and how to screen, rank, and select materials in corrosion-fatigue and stress corrosion cracking resistance is a significant challenge in the automotive industry and many engineering applications. In this paper, the mathematical structure of a superposition-theory based corrosion-fatigue model is investigated and possible closed-form and approximate solutions are sought. Based on the model and the associated solutions and test results, screening and ranking of the materials in fatigue, corrosion-fatigue are discussed.
Technical Paper

Characterization of Materials for Exhaust Systems under Combined Mechanical and Corrosive Environment

2013-09-24
2013-01-2420
Corrosion resistance is an extremely important technical issue for long-term durability and reliability performance of exhaust components and systems. Failure mechanisms, such as corrosion, fatigue, corrosion-fatigue and stress corrosion cracking, have long been recognized as the principal degradation and failure mechanisms of vehicle components and systems under combined mechanical and corrosive environmental conditions. The combination of fluid flow, introduced by components such as advanced injectors, and corrosive environment leads to corrosion-erosion failure mechanism. These failure mechanisms are strongly material, environment, and loading dependent. How to characterize, screen, rank and select the materials in corrosion resistance is a big challenge posed to materials scientists and engineers. In this paper, the common corrosion related failure mechanisms appearing in auto exhaust systems are reviewed first.
X