Refine Your Search

Topic

Search Results

Standard

INSTRUMENTATION AND TECHNIQUES FOR VEHICLE REFUELING EMISSIONS MEASUREMENT

1993-05-01
HISTORICAL
J1045_199305
This SAE Recommended Practice describes a procedure for measuring the hydrocarbon emissions occurring during the refueling of passenger cars and light trucks. It can be used as a method for investigating the effects of temperatures, fuel characteristics, etc., on refueling emissions in the laboratory. It also can be used to determine the effectiveness of evaporative emissions control systems to control refueling emissions. For this latter use, standard temperatures, fuel volatility, and fuel quantities are specified.
Standard

INSTRUMENTATION AND TECHNIQUES FOR VEHICLE REFUELING EMISSIONS MEASUREMENT

1973-08-01
HISTORICAL
J1045_197308
This SAE Recommended Practice describes a procedure for measuring the hydrocarbon emissions occurring during the refueling of passenger cars and light trucks. It can be used as a method for investigating the effects of temperatures, fuel characteristics, etc., on refueling emissions in the laboratory. It also can be used for determining the reduction in emissions achieved with emission control hardware. For this latter use, standard temperatures, fuel volatility, and fuel quantities are specified.
Standard

EMISSION TEST DRIVING SCHEDULES

1991-06-01
HISTORICAL
J1506_199106
This SAE Information Report describes various dynamometer driving schedules currently in use in the world for measurement of exhaust emissions and fuel economy of passenger cars and light trucks. Issuance of this document will allow driving schedules to be deleted from individual test procedures, thus reducing the amount of repeated information in the SAE Handbook. This document includes: a. Descriptions of driving schedules; and b. Second-by second definition of speed versus time sequences.
Standard

EMISSION TEST DRIVING SCHEDULES

1988-06-01
HISTORICAL
J1506_198806
This SAE Information Report describes various dynamometer driving schedules currently in use in the world for measurement of exhaust emissions and fuel economy of passenger cars and light trucks. Issuance of this information report will allow driving schedules to be deleted from individual test procedures, thus reducing the amount of repeated information in the SAE Handbook. This information report includes: 1 - Descriptions of driving schedules. 2 - Second-by second definition of speed versus time sequences.
Standard

MAXIMUM ALLOWABLE ROTATIONAL SPEED FOR INTERNAL COMBUSTION ENGINE FLYWHEELS

1995-07-03
HISTORICAL
J1456_199507
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This document applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

Maximum Allowable Rotational Speed for Internal Combustion Engine Flywheels

2012-10-23
CURRENT
J1456_201210
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This document applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

MAXIMUM ALLOWABLE ROTATIONAL SPEED FOR INTERNAL COMBUSTION ENGINE FLYWHEELS

1984-12-01
HISTORICAL
J1456_198412
This practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This practice applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

MAXIMUM ALLOWABLE ROTATIONAL SPEED FOR INTERNAL COMBUSTION ENGINE FLYWHEELS

1990-06-01
HISTORICAL
J1456_199006
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This document applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

MEASUREMENT OF FUEL EVAPORATIVE EMISSIONS FROM GASOLINE POWERED PASSENGER CARS AND LIGHT TRUCKS USING THE ENCLOSURE TECHNIQUE

1991-04-01
HISTORICAL
J171_199104
This SAE Recommended Practice describes a procedure for measuring evaporative emissions from fuel systems of passenger cars and light trucks. Emissions are measured during a sequence of laboratory tests that simulate typical vehicle usage in a metropolitan area during summer months: a A 1 h soak representing one diurnal cycle in which temperature of fuel in the vehicle’s tank is raised from 15.6 to 28.9 °C (60 to 84 °F) b A 17.9 km (11.1 mile) drive on a chassis dynamometer c A 1 h hot soak immediately following the 17.9 km (11.1 mile) drive The method described in this document, commonly known as the SHED (Sealed Housing for Evaporative Determination) technique, employs an enclosure in which the vehicle is placed during the diurnal and hot soak phases of the test.
Standard

MEASUREMENT OF FUEL EVAPORATIVE EMISSIONS FROM GASOLINE POWERED PASSENGER CARS AND LIGHT TRUCKS USING THE ENCLOSURE TECHNIQUE

1970-09-01
HISTORICAL
J171_197009
This SAE Recommended Practice describes a procedure for measuring evaporative emissions from fuel systems of passenger cars and light trucks. Emissions are measured during a sequence of laboratory tests that simulate typical vehicle usage in a metropolitan area during summer months: 1 A 1 hr soak representing one diurnal cycle in which temperature of fuel in the vehicle’s tank is raised from 60 to 84 F. 2 A 7 mile run on a chassis dynamometer. 3 A 1 hr hot soak immediately following the 7 mile run. The method described in this recommended practice for measuring the weight of fuel vapors emitted during the tests differs from that described in SAE J170. SAE J170 employs activated carbon traps connected to the fuel system at locations where vapors are expected to escape. Vapors from these openings are absorbed by the traps, and the gain in weight of the traps represents the fuel evaporative emissions.
Standard

MEASUREMENT OF FUEL EVAPORATIVE EMISSIONS FROM GASOLINE POWERED PASSENGER CARS AND LIGHT TRUCKS USING THE ENCLOSURE TECHNIQUE

1982-06-01
HISTORICAL
J171_198206
This SAE Recommended Practice describes a procedure for measuring evaporative emissions from fuel systems of passenger cars and light trucks. Emissions are measured during a sequence of laboratory tests that simulate typical vehicle usage in a metropolitan area during summer months: 1 A 1 h soak representing one diurnal cycle in which temperature of fuel in the vehicle's tank is raised from 60-84°F (15.6-28.9°C). 2 An 11.1 mile (17.9 km) run on a chassis dynamometer. 3 A 1 h hot soak immediately following the 11.1 mile (17.9 km) run. The method described in this recommended practice for measuring the weight of fuel vapors emitted during the tests differs from that described in SAE J170a (July, 1972). SAE J170a employs activated carbon traps connected to the fuel system at locations where vapors are expected to escape. Vapors from these openings are absorbed by the traps, and the gain in weight of the traps represents the fuel evaporative emissions.
Standard

MEASUREMENT OF FUEL EVAPORATIVE EMISSIONS FROM GASOLINE POWERED PASSENGER CARS AND LIGHT TRUCKS USING THE ENCLOSURE TECHNIQUE

1977-09-01
HISTORICAL
J171A_197709
This SAE Recommended Practice describes a procedure for measuring evaporative emissions from fuel systems of passenger cars and light trucks. Emissions are measured during a sequence of laboratory tests that simulate typical vehicle usage in a metropolitan area during summer months: 1 A 1 h soak representing one diurnal cycle in which temperature of fuel in the vehicle’s tank is raised from 60 to 84 F (15.6 to 28.9 C). 2 A 7.5 mile (12.1 km) run on a chassis dynamometer. 3 A 1 h hot soak immediately following the 7.5 mile (12.1 km) run. The method described in this recommended practice for measuring the weight of fuel vapors emitted during the tests differs from that described in SAE J170a. SAE J170a employs activated carbon traps connected to the fuel system at locations where vapors are expected to escape. Vapors from these openings are absorbed by the traps, and the gain in weight of the traps represents the fuel evaporative emissions.
Standard

MEASUREMENT OF FUEL EVAPORATIVE EMISSIONS FROM GASOLINE POWERED PASSENGER CARS AND LIGHT TRUCKS USING THE ENCLOSURE TECHNIQUE

1972-07-01
HISTORICAL
J171A_197207
This SAE Recommended Practice describes a procedure for measuring evaporative emissions from fuel systems of passenger cars and light trucks. Emissions are measured during a sequence of laboratory tests that simulate typical vehicle usage in a metropolitan area during summer months: 1 A 1 h soak representing one diurnal cycle in which temperature of fuel in the vehicle’s tank is raised from 60 to 84 F (15.6 to 28.9 C). 2 A 7.5 mile (12.1 km) run on a chassis dynamometer. 3 A 1 h hot soak immediately following the 7.5 mile (12.1 km) run. The method described in this recommended practice for measuring the weight of fuel vapors emitted during the tests differs from that described in SAE J170. SAE J170 employs activated carbon traps connected to the fuel system at locations where vapors are expected to escape. Vapors from these openings are absorbed by the traps, and the gain in weight of the traps represents the fuel evaporative emissions.
Standard

ENGINE COOLANT PUMP SEALS

1990-06-01
HISTORICAL
J780_199006
This SAE standard outlines physical dimensions and nomenclature for the sizes of seals commonly used in engine coolant pumps of automotive type engines. Its purpose is to define a standard envelope to accommodate installation of various seal designs and to promote uniformity in seal nomenclature.
Standard

Engine Coolant Pump Seals

2000-11-07
HISTORICAL
J780_200011
This SAE Standard outlines physical dimensions and nomenclature for the sizes of seals commonly used in engine coolant pumps of automotive type engines. Its purpose is to define a standard envelope to accommodate installation of various seal designs and to promote uniformity in seal nomenclature. (See Figures 1 to 5.)
Standard

Engine Coolant Pump Seals

2002-10-25
CURRENT
J780_200210
This SAE Standard outlines physical dimensions and nomenclature for the sizes of seals commonly used in engine coolant pumps of automotive type engines. Its purpose is to define a standard envelope to accommodate installation of various seal designs and to promote uniformity in seal nomenclature. (See Figures 1 to 5.)
Standard

STANDARD CLASSIFICATION SYSTEM FOR NONMETALLIC AUTOMOTIVE GASKET MATERIALS

1990-06-01
HISTORICAL
J90_199006
The classification system provides a means for specifying or describing pertinent properties of commercial nonmetallic gasket materials. Materials composed of asbestos, cork cellulose, and other organic or inorganic materials in combination with various binders or impregnants are included. Materials normally classified as rubber compounds are not included, since they are covered in SAE J200 - ASTM D 2000. Gasket coatings are not covered, since details thereof are intended to be given on engineering drawings or in separate specifications.
X