Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Development of Thermal Fatigue Resistant Ferritic Cast Steel for Turbine Housing of Diesel Engine Automobile

2009-04-20
2009-01-0215
In recent years, the temperature of automobile exhaust gas is on a rising trend due to lowering pollutant emissions and improving fuel economy, and exhaust gas temperature reaches as high as 1173K in the case of diesel engine cars. Against this background, Ni-resist D-5S cast iron has been chosen extensively as a turbine housing material for the diesel engine cars. But, Ni-resist D-5S has become a material of great cost volatility due to high Nickel content of 35 mass%, which price is expensive and unstable. On the contrary Ferritic cast steels, which possesses favorable thermal fatigue properties and good material cost stability, are considered to be promising substitutions for the Ni-resist D-5S. However conventional ferritic cast steels have relatively high melting points, which cause poor castability.
Technical Paper

Development of Low-Nickel Superalloys for Exhaust Valves

1998-02-01
980703
Honda has developed, in collaboration with Hitachi Metals and Daido Steel, two types of low-nickel heat-resistant alloys for exhaust valves which are more cost effective than the conventional nickel alloys. They are NCF4015 that contains approximately 40% nickel and NCF3015 with approximately 30% nickel content. The two types of new alloys were developed based on our unique alloy design concept. Both alloys feature superb high-temperature strength and are capable of maintaining favorable material properties, even after an high-temperature exposure. The NCF4015 is compatible with the conventional Inconel 751 and 60Ni alloys in terms of high-temperature strength. The NCF3015 falls slightly behind the two metals, but overwhelms the 21-4N (SUH35) in high-temperature strength. The exhaust valves made of the two alloys developed have been used for mass production engines.
Technical Paper

Development of a High-Performance TiA1 Exhaust Valve

1996-02-01
960303
A new high-performance and lightweight TiA1 intermetallic compound exhaust valve has been developed. The TiA1 valve can improve power output and fuel economy by contributing higher engine speeds and a reduction in valvetrain friction. It was achieved by developing a Ti-33.5A1-0.5Si-1Nb-0.5Cr (mass%) intermetallic compound, a precision casting method for TiA1 that provides a low-cost, high-quality process, and a plasma carburizing technique for assuring good wear resistance on the valve stem end, stem and face.
Technical Paper

Trends in Engine Valve Development for Automobiles and Motorcycles

2000-03-06
2000-01-0907
Engine valve development trends are to first, reduce the costly metal content and secondly, increase strength or reduce weight. These developments can be used to reduce valve cost or fuel consumption or increase power. The authors developed a new strain age hardening type alloy, NCF2415C, which has both good cold forgeability and heat resistance. Its chemical composition is Fe-24Ni-15Cr-2.2Ti-1.5Al-0.5Nb-0.02C-.006B-2Cu. This new alloy and the establishment f cold forging technology made it possible to develop cold forged exhaust valves having durability equal or better than the conventional hot forged exhaust valves.
X