Refine Your Search

Search Results

Journal Article

Hydrogen Embrittlement of Commercially Produced Advanced High Strength Sheet Steels

2010-04-12
2010-01-0447
The susceptibility of Advanced High Strength Steels (AHSS) to hydrogen embrittlement (HE) was evaluated on selected high strength sheet steels (DP 600, TRIP 780, TRIP 980, TWIP-Al, TWIP, and Martensitic M220) and the results were compared to data on a lower strength (300 MPa tensile strength) low carbon steel. Tensile samples were cathodically charged and then immediately tensile tested to failure to analyze the mechanical properties of the as-charged steel. The effects of hydrogen on deformation and fracture behavior were evaluated through analysis of tensile properties, necking geometry, and SEM images of fracture surfaces and metallographic samples of deformed tensile specimens. The two fully austenitic TWIP steels were resistant to hydrogen effects in the laboratory charged tensile samples.
Technical Paper

Influence of Coating Microstructure on the Fatigue Properties of Zinc Coated Sheet Steels

1998-02-23
980955
The influence of coatings on fatigue behavior has been examined for the following commercially produced sheet steels: uncoated titanium stabilized interstitial-free (IF); electrogalvanized titanium stabilized IF; hot-dip galvanized aluminum killed, drawing quality (AKDQ); and galvannealed AKDQ. Fully reversed bending fatigue tests were conducted at ambient temperature on Krouse-type flexural fatigue machines. A dependence of crack development was observed and correlated to the microstructure and properties of the different coatings. Furthermore, a functional design relationship for each material was determined through stress-life analysis. The experimentally determined fatigue properties were compared to conventional estimates based on tensile properties which ignore coating effects. The results of this work suggest that ductile coatings may enhance fatigue resistance, while brittle coatings may reduce fatigue life.
Technical Paper

The Fatigue Performance of High Temperature Vacuum Carburized Nb Modified 8620 Steel

2007-04-16
2007-01-1007
The bending fatigue performance of high temperature (1050 °C) vacuum carburized Nb modified 8620 steel, with niobium additions of 0.02, 0.06 and 0.1 wt pct, was evaluated utilizing a modified Brugger specimen geometry. Samples were heated at two different rates (20 and 114 °C min-1) to the carburizing temperature resulting in different prior austenite grain structures that depended on the specific Nb addition and heating rate employed. At the lower heating rate, uniform fine grained prior austenite grain structures developed in the 0.06 and 0.1 Nb steels while a duplex grain structure with the presence of large (>200 μm grains) developed in the 0.02 Nb steel. At the higher heating rate the propensity for abnormal grain growth was highest in the 0.02 Nb steel and complete suppression of abnormal grain growth was achieved only with the 0.1 Nb steel.
Technical Paper

Investigation of S-N Test Data Scatter of Carburized 4320 Steel

2007-04-16
2007-01-1006
A series of bending fatigue tests were conducted and S-N data were obtained for two groups of 4320 steel samples: (1) carburized, quenched and tempered, (2) carburized, quenched, tempered and shot peened. Shot peening improved the fatigue life and endurance limit. The S-N data exhibited large scatter, especially for carburized samples and at the high cycle life regime. Sample characterization work was performed and scatter bands were established for residual stress distributions, in addition to fracture and fatigue properties for 4320 steel. Moreover, a fatigue life analysis was performed using fracture mechanics and strain life fatigue theories. Scatter in S-N curves was established computationally by using the lower bound and upper bound in materials properties, residual stress and IGO depth in the input data. The results for fatigue life analysis, using either computational fracture mechanics or strain life theory, agreed reasonably well with the test data.
Technical Paper

Effects of Silicon and Boron Additions on the Susceptibility to Quench Embrittlement and the Bending Fatigue Performance of Vacuum Carburized Modified 4320 Steel

2007-04-16
2007-01-1005
The effect of B and Si additions on fracture and fatigue performance of vacuum carburized 4320 steel and modifications of 4320 steel containing additions of Si (1.0 and 2.0 wt pct) and B (0 and 17 ppm) was evaluated by bending fatigue testing. Three rates of gas quenching, in 10 bar nitrogen and 15 and 20 bar helium, were used to cool specimens after carburizing. The B, protected by Ti additions, together with the Si additions, increased core hardenability. The B/Si modified steels showed no improvement in fatigue resistance, as measured by endurance limits established by 10 million cycle runouts without fracture. However, scanning electron microscopy showed that Si reduced sensitivity to intergranular fracture or quench embrittlement, a major cause of bending fatigue crack initiation, and contributed to variable fatigue performance, with both low-cycle failures and runout performance at applied stresses significantly above measured endurance limits.
Technical Paper

Assessment of the Strain-Rate Dependent Tensile Properties of Automotive Sheet Steels

2004-03-08
2004-01-0507
High strain rate test methods to obtain strain-rate dependent sheet steel tensile properties are considered. A tensile test method for sheet steels was developed to obtain accurate stress-strain data over the strain rate range from 0.001 s-1 to 500 s-1 using a servo-hydraulic test machine and tensile samples instrumented with strain gages. Results on several different automotive sheet steels, including interstitial free (IF), high strength low alloy (HSLA), dual phase (DP), and transformation induced plasticity (TRIP) steels, are presented. The results show that strain rate response differs between the various alloy systems. These results are compared with previously published data on strain-rate dependent steel properties. The importance of stress-strain curve shapes, which depend on alloy system, on energy absorption calculations using areas under stress-strain curves are also described.
Technical Paper

Effects of Pre-Strain on Properties of Low-Carbon Sheet Steels Tested over a Wide Range of Strain Rates

2001-03-05
2001-01-0082
Knowledge of high strain-rate deformation behavior of automotive body structural materials is of importance for design of new vehicles with improved crash-energy management characteristics. Since a large range of plastic strains is encountered during the forming process prior to assembly, the mechanical behavior of sheet steels under high strain rate deformation conditions must be understood after pre-straining, in addition to the as-produced condition. This paper presents the compression testing methodology employed to examine these properties, and focuses on the effects of quasi-static pre-strains (from 0 to 20%) on the subsequent behavior of a low carbon interstitial free steel tested over a broad range of strain rates (from 10−2 to 103s−1). The results suggest that the increase in yield stress associated with increasing strain rate is not substantially influenced by prior cold work.
Technical Paper

Deep Rolling Response of Notched Medium Carbon Bar Steels

2004-03-08
2004-01-1528
The effects of deep rolling were evaluated by reviewing the fatigue performance of three medium-carbon (0.4 C) bar steels representing microstructural classes characteristic of forging steels used for crankshaft and other automotive applications. Deep rolling is a surface deformation process whereby a radially symmetric work piece undergoes a surface deformation operation. The steel grades included a quenched and tempered alloy steel (4140) that demonstrated a high yield stress and low strain hardening rate, a non-traditional bainitic experimental grade (1.2 Mn, 0.72 Si) containing high amounts of retained austenite with low yield stress and high strain hardening rate, and a ferritic/pearlitic grade (1.3 Mn, 0.56 Si) with a low yield stress and medium strain rate hardening rate. A reproducible test methodology to assess fatigue behavior was developed, based on flex-beam, fully reversed, S-N type laboratory fatigue testing.
Technical Paper

Optimized Carburized Steel Fatigue Performance as Assessed with Gear and Modified Brugger Fatigue Tests

2002-03-04
2002-01-1003
The effectiveness of three different techniques, designed to improve the bending fatigue life in comparison to conventionally processed gas-carburized 8620 steel, were evaluated with modified Brugger bending fatigue specimens and actual ring and pinion gears. The bending fatigue samples were machined from forged gear blanks from the same lot of material used for the pinion gear tests, and all processing of laboratory samples and gears was done together. Fatigue data were obtained on standard as-carburized parts and after three special processing histories: shot-peening to increase surface residual stresses; double heat treating to refined austenite grain size; and vacuum carburizing to minimize intergranular oxidation. Standard room-temperature S-N curves and endurance limits were obtained with the laboratory samples. The pinions were run as part of a complete gear set on a laboratory dynamometer and data were obtained at two imposed torque levels.
Technical Paper

Causes of Variability in Gear Fatigue Testing

2003-03-03
2003-01-1308
Fatigue testing of actual components can produce considerable variation in the data. This seems to be especially true for higher strength case hardened components such as gears. Long term fatigue data on gears has shown there may be up to a 9:1 difference between the high and low cycle samples tested under the same conditions. This paper presents a systematic approach to determining some of the causes of this variation. Hypoid gear sets were dynamometer tested at 6 month intervals to determine the contribution of each cause. This study shows that the dynamometer test set up, the heat treatment of the gears, the cutting of the gear teeth, and the heat of steel used all contribute to the variability. Several metallurgical factors were also examined for a correlation to fatigue life.
Technical Paper

Bending Fatigue Life Analysis of Carburized Components Using Strain Life and Fracture Mechanics Approaches

2003-03-03
2003-01-1307
Axle primary gearing is normally carburized for high and balanced resistance to contact fatigue, wear, bending fatigue, and impact loading. The focus of this work is on bending fatigue which is a key design consideration of automotive and commercial vehicle axle gearing. Since a carburized component is basically a composite material with steep gradients in carbon content, hardness, tensile strength and microstructure from surface to the middle of the cross section combined with non-linear residual stress, its bending fatigue life prediction is a complex and challenging task. Many factors affect the bending fatigue performance of axle gearing, such as gear design, gear manufacturing, loading history during service, residual stress distribution, steel grade, and heat treatment. In this paper, the general methodology for bending fatigue life prediction of a carburized component is investigated. Carburized steel composites are treated as two homogeneous materials: case and core.
Technical Paper

Bending Fatigue Crack Characterization and Fracture Toughness of Gas Carburized SAE 4320 Steel

1992-02-01
920534
Crack initiation and propagation in an SAE 4320 steel gas carburized to a 1.0 mm case depth was examined in specimens subjected to bending fatigue. Cellulose acetate replicas of incrementally loaded specimens showed that small, intergranular cracks were initiated during static loading to stress levels just above the endurance limit. The intergranular cracks arrest and serve as initiation sites for semi-elliptical, transgranular fatigue crack propagation. The maximum depth of stable crack propagation was between 0.17 and 0.23 mm, a depth which corresponds to the maximum hardness of the carburized case. Three equations which provide approximations to the stress distribution in the fatigue specimens were used to calculate KIC for the carburized case with values of maximum applied stress and measured stable crack geometry.
Technical Paper

Comparison of Hole Expansion Properties of Quench & Partitioned, Quench & Tempered and Austempered Steels

2012-04-16
2012-01-0530
Quenching & Partitioning (Q&P) is receiving increased attention as a novel Advanced High Strength Steel (AHSS) processing route as promising tensile properties of the “third generation” have been reported. The current contribution reports hole expansion ratios (HER) of Q&P steels and compares the values with HERs obtained for “conventional” AHSS processing routes such as austempering and Quench & Tempering (Q&T). Intercritically annealed C-Mn-Al-Si-P and fully austenitized C-Mn-Si microstructures were studied. Optimum combinations of tensile strength and HER were obtained for fully austenitized C-Mn-Si Q&P samples. Higher HER values were obtained for Q&P than for Q&T steels for similar tempering/partitioning temperatures. Austempering following intercritical annealing results in higher HER than Q&P at similar tensile strength levels. In contrast, Q&P following full austenitization results in higher hole expansion than austempering even at higher strength levels.
Technical Paper

Virtual Testing: Fatigue Life (S-N Curves) Simulations for Commercial Vehicle Axle Components

2004-10-26
2004-01-2700
Current trends in vehicle development, including both automotive and commercial vehicles, are characterized by short model life cycles, reduced development time, concurrent design and manufacturing development, reduced design changes, and reduced total cost. All of these are driven by customer demand of higher load capacity, reduced weight, extended durability and warranty requirement, better NVH performance and reduced cost. These trends have resulted in increased usage of computational simulation tools in design, manufacturing, and testing, i.e. virtual testing or virtual prototyping. This paper summarizes our work in virtual testing, i.e. fatigue life simulations using computational fracture mechanics for commercial vehicle axle gearing development. First, fatigue life simulation results by using computational fracture mechanics CRACKS software were verified by comparing with gear teeth bending fatigue test data and three point bending fatigue test data.
Technical Paper

Bending Fatigue Performance of Carburized 4320 Steel

1993-03-01
930963
The bending fatigue performance of four heats of carburized, commercially-produced SAE 4320 steel was evaluated. Simulated gear tooth in bending (SGTB) cantilever beam specimens from each heat were identically carburized and fatigue tested in the direct quenched condition after carburizing. The microstructure and fracture surfaces of all specimens were characterized with light and electron microscopy. The four direct quenched sets of specimens performed similarly in low cycle fatigue. Endurance limits among the direct quenched specimens ranged between 1100 and 1170 MPa (160 and 170 ksi) and intergranular cracking dominated fatigue crack initiation. An additional set of specimens from one of the heats was reheated after carburizing. The fatigue performance of the reheated specimens was superior to that of the direct quenched specimens in both the low and high cycle regions. The effects of inclusion content, microstructure, and residual stresses on fatigue performance are discussed.
Technical Paper

Prepainted Sheet Steel for Outer Automobile Body Panels: Paint Deformation Behavior

1995-02-01
950380
The paint deformation behavior in fully prepainted sheet steel intended for outer automobile body panels is examined in three categories: paint sliding behavior during forming, paint surface roughening during straining leading to loss of coating reflectivity, and dry heat cracking (i.e. time and temperature dependent post-forming paint cracking resulting from viscoelastic strain relaxation). The main findings are: frictional behavior is dictated by the outer coating while pigment particles tend to decrease the measured coefficient of friction; the loss of distinctiveness of image with strain is a result of shear band formation, an inherent deformation mechanism within the polymer coatings; and, dry heat cracks evolve in a two step process where crack nuclei develop during forming and grow as a result of viscoelastic strain relaxation in the coating upon subsequent exposure to heat.
Technical Paper

Investigation of the Effect of Sample Size on Fatigue Endurance Limit of a Carburized Steel

2006-04-03
2006-01-0539
Prediction of fatigue performance of large structures and components is generally done through the use of a fatigue analysis software, FEA stress/strain analysis, load spectra, and materials properties generated from laboratory tests with small specimens. Prior experience and test data has shown that a specimen size effect exists, i.e. the fatigue strength or endurance limit of large members is lower than that of small specimens made of same material. Obviously, the size effect is an important issue in fatigue design of large components. However a precise experimental study of the size effect is very difficult for several reasons. It is difficult to prepare geometrically similar specimens with increased volume which have the same microstructures and residual stress distributions throughout the entire material volume to be tested. Fatigue testing of large samples can also be a problem due to the limitation of load capacity of the test systems available.
Technical Paper

Effects of Testing Temperature on the Fatigue Behavior of Carburized Steel

2005-04-11
2005-01-0986
The effects of elevated testing temperature on the fatigue behavior of carburized steel were evaluated by testing modified Brügger bending fatigue specimens at room temperature, 90 °C and 150 °C. SAE 4023, SAE 4320, and SAE 9310 steel were studied to assess the influence of alloy content and stability of retained austenite. Fatigue samples were gas-carburized and tested in air at 30 Hz with a stress ratio of 0.1. An infrared spot lamp was used to heat samples to 90 °C (150 °F) or 150 °C (302 °F) during testing. S-N curves were developed for the room temperature baseline tests as well as elevated temperature tests. The endurance limits determined are as follows: SAE 4023-RT (1170 MPa), SAE 4023-90°C (1140 MPa), SAE 4320-RT (1210 MPa), SAE 4320-90°C (1280 MPa), SAE 9310-RT (1380 MPa), SAE 9310-90°C (1240 MPa).
Technical Paper

Bending Fatigue Properties of Prestrained Interstitial Free Zinc-Coated Sheet Steels

2000-03-06
2000-01-0309
The effects of prestrain and zinc coating type on the bending fatigue behavior of titanium-stabilized interstitial free steel were evaluated. From a single zinc bath chemistry, coated sheet steel samples were prepared with either a hot dip galvanized or galvannealed coating. Uniaxial tensile prestrains of 2 and 4 pct. were introduced parallel to the rolling direction on 12.7 cm wide strips. Krouse-type fatigue samples were machined both parallel and transverse to the rolling/prestrain direction. Reversed bending S-N fatigue data showed that the fatigue resistance depended on a complex interaction between the strength increase due to work hardening and fatigue crack development as altered by the presence of the coatings. For both coating types the fatigue resistance increased with prestrain. During prestrain, coating cracks oriented perpendicular to the tensile prestrain direction developed and the crack density was greater in the galvannealed materials.
Technical Paper

Effect of Thermal Treatments and Carbon Potential on Bending Fatigue Performance of SAE 4320 Gear Steel

1999-03-01
1999-01-0603
This project investigated the effect of carburizing carbon-potential and thermal history on the bending fatigue performance of carburized SAE 4320 gear steel. Modified-Brugger cantilever bending fatigue specimens were carburized at carbon potentials of 0.60, 0.85, 1.05, and 1.25 wt. pct. carbon, and were either quenched and tempered or quenched, tempered, reheated, quenched, and tempered. The reheat treatment was designed to lower the solute carbon content in the case through the formation of transition carbides and refine the prior austenite grain size. Specimens were fatigue tested in a tension/tension cycle with a minimum to maximum stress ratio of 0.1. The bending fatigue results were correlated with case and core microstructures, hardness profiles, residual stress profiles, retained austenite profiles, and component distortion.
X