Refine Your Search

Topic

Search Results

Standard

Ergonomic Guidelines for Carts and Dollies

2015-03-13
CURRENT
USCAR41
This document describes the assessment methods and physical requirements associated with the manual handling of carts and dollies, specific to material handling systems. All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an “off-the shelf” design, always consult the responsible Ergonomics Department. Force guidelines were primarily developed referencing the push/pull psychophysical Snook data contained in A Guide to Manual Materials Handling (second edition) by Mital, Nicholson and Ayoub (NY: Taylor & Francis, 1997). The force guidelines accommodate 75% of female capabilities and 99% of male capabilities. Factors that were included in the established guideline include: push / pull distances, vertical hand height, horizontal hand height, frequency and wheel / castor alignment and load rating. These factors were used to develop a conservative force guideline.
Standard

TEST PROCEDURES FOR EVALUATING BOLT-LOAD RETENTION OF MAGNESIUM ALLOYS

2020-11-19
CURRENT
USCAR35-1
A bolt-load retention (BLR) test is a practical test to determine the bolt load of a fastener joint with time and at given temperatures. There are three types of BLR tests described in this standard, namely general-purpose test, design-purpose test, and screening material test. A general-purpose BLR test may be used for screening materials, while a design-purpose BLR test is usually used to verify the BLR behavior of a specific joint. The screening material test is an example of the general-purpose test for typical automotive applications.
Standard

TEST PROCEDURES FOR EVALUATING BOLT-LOAD RETENTION OF MAGNESIUM ALLOYS

2007-10-08
HISTORICAL
USCAR35
A bolt-load retention (BLR) test is a practical test to determine the bolt load of a fastener joint with time and at given temperatures. There are three types of BLR tests described in this standard, namely general-purpose test, design-purpose test, and screening material test. A general-purpose BLR test may be used for screening materials, while a design-purpose BLR test is usually used to verify the BLR behavior of a specific joint. The screening material test is an example of the general-purpose test for typical automotive applications.
Standard

NEW FINISH DEVELOPMENT DOCUMENT

2020-11-19
CURRENT
USCAR32-1
This standard lists variables that shall be investigated and reported as an initial investigation into new or revised surface finishes intended for use on fasteners. This standard provides instruction for producing a final report that will be used to determine if further investigation of a surface finish is justified. Further investigation may include tests and evaluations specific to an individual OEM prior to introduction/approval of the surface finish. The final report shall include the results, observations, and conclusions for all of the variables. The final report may be made up of several individual reports covering each variable. In all cases the laboratory performing the test, the test date and the report approver shall be included in the final report.
Standard

NEW FINISH DEVELOPMENT DOCUMENT

2007-03-13
HISTORICAL
USCAR32
This standard lists variables that shall be investigated and reported as an initial investigation into new or revised surface finishes intended for use on fasteners. This standard provides instruction for producing a final report that will be used to determine if further investigation of a surface finish is justified. Further investigation may include tests and evaluations specific to an individual OEM prior to introduction/approval of the surface finish. The final report shall include the results, observations, and conclusions for all of the variables. The final report may be made up of several individual reports covering each variable. In all cases the laboratory performing the test, the test date and the report approver shall be included in the final report.
Standard

ROAD VEHICLES – 60 V AND 600 V SINGLE CORE (ISO/METRIC) CABLES – DIMENSIONS, TEST METHODS AND REQUIREMENTS

2002-09-09
HISTORICAL
USCAR23
This International Standard specifies the dimensions, test methods, and requirements for single core 60 V cables intended for use in road vehicle applications where the nominal system voltage is ≤ (60 V DC or 25 V AC). It also specifies additional test methods and/or requirements for 600 V cables intended for use in road vehicle applications where the nominal system voltage is > (60 V DC or 25 V AC) to ≤ (600 V DC or 600 V AC). It also applies to individual cores in multi-core cables. See ISO 6722 for “Temperature Class Ratings”.
Standard

STANDARD FOR TIRE TRACEABILITY CONTENT AND FORMAT FOR THE RADIO-FREQUENCY IDENTIFICATION (RFID) TAG AND ASSOCIATED TIRE DATA SET

2019-04-17
HISTORICAL
USCAR39
This standard describes a requirement for automotive tire traceability. It includes a definition of the RFID tag and the associated tire data set that can be accessed using the RFID tag as an identifier. The standard describes a unique identification and the associated data set for each tire produced by the tire fabricator. This data will either be provided or transmitted at the time of shipment to retailers, wholesalers or original equipment vehicle manufacturers. Tire identification code and data may be used for error proofing, determining the tire specifications or supporting any inquiries that occur for the duration of its automotive life.
Standard

STANDARD FOR TIRE TRACEABILITY CONTENT AND FORMAT FOR THE RADIO-FREQUENCY IDENTIFICATION (RFID) TAG AND ASSOCIATED TIRE DATA SET

2020-11-19
CURRENT
USCAR39-1
This standard describes a requirement for automotive tire traceability. It includes a definition of the RFID tag and the associated tire data set that can be accessed using the RFID tag as an identifier. The standard describes a unique identification and the associated data set for each tire produced by the tire fabricator. This data will either be provided or transmitted at the time of shipment to retailers, wholesalers or original equipment vehicle manufacturers. Tire identification code and data may be used for error proofing, determining the tire specifications or supporting any inquiries that occur for the duration of its automotive life.
Standard

TORQUE-TENSION TESTING AND EVALUATION OF FASTENER FINISHES

2020-11-19
CURRENT
USCAR11-2
This standard provides a test method for determining the torque-tension relationship of a fastener finish as applied to a surrogate screw for the purpose of measuring the frictional characteristic of the fastener finish. The results obtained by this test shall be used as a process control attribute of the fastener finish and shall not be utilized for specific applications.
Standard

TORQUE-TENSION TESTING AND EVALUATION OF FASTENER FINISHES

2007-03-01
HISTORICAL
USCAR11-1
This standard provides a test method for determining the torque-tension relationship of a fastener finish as applied to a surrogate screw for the purpose of measuring the frictional characteristic of the fastener finish. The results obtained by this test shall be used as a process control attribute of the fastener finish and shall not be utilized for specific applications.
Standard

TEST FOR EVALUATING THE TORQUE-TENSION RELATIONSHIP OF BOTH EXTERNAL AND INTERNAL METRIC THREADED FASTENERS

2007-04-05
HISTORICAL
USCAR10-2
This standard provides a test method for determining the torque-tension relationship of both external and internal metric threaded fasteners for the purpose of measuring the frictional characteristics of the threaded fasteners. The results obtained by this test are relevant to the test conditions only and should not be utilized for specific applications.
Standard

TEST FOR EVALUATING THE TORQUE-TENSION RELATIONSHIP OF BOTH EXTERNAL AND INTERNAL METRIC THREADED FASTENERS

2004-05-14
HISTORICAL
USCAR10-1
This standard provides a test method for determining the torque-tension relationship of both external and internal metric threaded fasteners for the purpose of measuring the frictional characteristics of the threaded fasteners. The results obtained by this test are relevant to the test conditions only and should not be utilized for specific applications.
Standard

TEST FOR EVALUATING THE TORQUE-TENSION RELATIONSHIP OF BOTH EXTERNAL AND INTERNAL METRIC THREADED FASTENERS

1998-12-30
HISTORICAL
USCAR10
This standard provides a test method for determining the torque-tension relationship of both external and internal metric threaded fasteners for the purpose of measuring the frictional characteristics of the threaded fasteners. The results obtained by this test are relevant to the test conditions only and should not be utilized for specific applications.
Standard

PERFORMANCE SPECIFICATION FOR AUTOMOTIVE WIRE HARNESS RETAINER CLIPS

2017-05-10
HISTORICAL
USCAR44
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises a) from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray and different thicknesses of the holes that the clip is inserted into.
Standard

PERFORMANCE SPECIFICATION FOR AUTOMOTIVE WIRE HARNESS RETAINER CLIPS

2021-01-20
HISTORICAL
USCAR44-1
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray, and different thicknesses of the holes that the clip is inserted into.
Standard

PERFORMANCE SPECIFICATION FOR AUTOMOTIVE WIRE HARNESS RETAINER CLIPS

2023-03-23
CURRENT
USCAR44-2
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray, and different thicknesses of the holes that the clip is inserted into.
Standard

Avoidance of Hydrogen Embrittlement of Steel

2002-08-22
HISTORICAL
USCAR5-1
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel. It also defines the relief procedures required to minimize the risk of hydrogen embrittlement. SAE/USCAR-5 is intended to control the process.
Standard

Avoidance of Hydrogen Embrittlement of Steel

2007-03-01
HISTORICAL
USCAR5-2
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and define the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process. 1.1 Hydrogen embrittlement of steel, which can cause brittle fractures under stress, occurs as a result of the absorption of hydrogen during cleaning, phosphate coating and plating processes. The susceptibility to hydrogen embrittlement increases with increasing stress (internal or externally applied stress) and increasing material strength. 1.2 Hardness readings in this specification are in Vickers scale. SAE J417 should be referred to for conversion to other scales. NOTE 1: All references to temperatures relate to part core temperature and not the indicated oven air temperature. Statistical data of verifications in temperature at the center of the oven load and oven temperature shall be established to develop the oven profile.
Standard

AVOIDANCE OF HYDROGEN EMBRITTLEMENT OF STEEL

2012-07-01
HISTORICAL
USCAR5-4
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and define the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process.
Standard

DEEMBRITTLEMENT VERIFICATION TEST

1998-12-30
HISTORICAL
USCAR7
This standard outlines test methods and practices which can detect embrittlement of steel parts. It is a process control or referee verification test. The risk of embrittlement of steel is minimized by using best practices in the finishing/coating process. One such practice is described in SAE/USCAR-5, Avoidance of Hydrogen Embrittlement of Steel.
X