Refine Your Search

Topic

Search Results

Standard

EMISSION TEST DRIVING SCHEDULES

1991-06-01
HISTORICAL
J1506_199106
This SAE Information Report describes various dynamometer driving schedules currently in use in the world for measurement of exhaust emissions and fuel economy of passenger cars and light trucks. Issuance of this document will allow driving schedules to be deleted from individual test procedures, thus reducing the amount of repeated information in the SAE Handbook. This document includes: a. Descriptions of driving schedules; and b. Second-by second definition of speed versus time sequences.
Standard

EMISSION TEST DRIVING SCHEDULES

1988-06-01
HISTORICAL
J1506_198806
This SAE Information Report describes various dynamometer driving schedules currently in use in the world for measurement of exhaust emissions and fuel economy of passenger cars and light trucks. Issuance of this information report will allow driving schedules to be deleted from individual test procedures, thus reducing the amount of repeated information in the SAE Handbook. This information report includes: 1 - Descriptions of driving schedules. 2 - Second-by second definition of speed versus time sequences.
Standard

REPORTING ON EMISSION TESTING FOR IN-USE LIGHT-DUTY TRUCKS AND PASSENGER VEHICLES

2000-10-01
HISTORICAL
J1712_200010
This SAE Recommended Practice applies to the reporting of laboratory and test site data from the gaseous and evaporative emission tests of in-use light-duty trucks and passenger vehicles. This document describes the reporting of procedures, fuel specifications, and vehicle information necessary to compare the results of in-use tests. Any variations in vehicles, instrumentation, test equipment, or test program purpose should be adequately described.
Standard

MAXIMUM ALLOWABLE ROTATIONAL SPEED FOR INTERNAL COMBUSTION ENGINE FLYWHEELS

1995-07-03
HISTORICAL
J1456_199507
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This document applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

Maximum Allowable Rotational Speed for Internal Combustion Engine Flywheels

2012-10-23
CURRENT
J1456_201210
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This document applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

MAXIMUM ALLOWABLE ROTATIONAL SPEED FOR INTERNAL COMBUSTION ENGINE FLYWHEELS

1984-12-01
HISTORICAL
J1456_198412
This practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This practice applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

MAXIMUM ALLOWABLE ROTATIONAL SPEED FOR INTERNAL COMBUSTION ENGINE FLYWHEELS

1990-06-01
HISTORICAL
J1456_199006
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This document applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

Measurement of Fuel Evaporative Emissions from Gasoline Powered Passenger Carsand Light Trucks Using the Enclosure Technique

2000-12-07
CURRENT
J171_200012
This SAE Recommended Practice describes a procedure for measuring evaporative emissions from fuel systems of passenger cars and light trucks. Emissions are measured during a sequence of laboratory tests that simulate typical vehicle usage in a metropolitan area during summer months: a. A 1 h soak representing one diurnal cycle in which temperature of fuel in the vehicle's tank is raised from 15.6 to 28.9 °C (60 to 84 °F) b. A 17.9 km (11.1 mile) drive on a chassis dynamometer c. A 1 h hot soak immediately following the 17.9 km (11.1 mile) drive The method described in this document, commonly known as the SHED (Sealed Housing for Evaporative Determination) technique, employs an enclosure in which the vehicle is placed during the diurnal and hot soak phases of the test.
Standard

Application Guide to Radial Lip Seals

2002-10-25
CURRENT
J946_200210
This SAE Recommended Practice is intended as a guide to the use of radial lip type seals. It has been prepared from existing literature, which includes standards, specifications, and catalog data of both oil seal producers and users and includes generally accepted information and data. The main reason for the preparation of the document is to make standard information available in one document to the users of oil seals.
Standard

STANDARD CLASSIFICATION SYSTEM FOR NONMETALLIC AUTOMOTIVE GASKET MATERIALS

1990-06-01
HISTORICAL
J90_199006
The classification system provides a means for specifying or describing pertinent properties of commercial nonmetallic gasket materials. Materials composed of asbestos, cork cellulose, and other organic or inorganic materials in combination with various binders or impregnants are included. Materials normally classified as rubber compounds are not included, since they are covered in SAE J200 - ASTM D 2000. Gasket coatings are not covered, since details thereof are intended to be given on engineering drawings or in separate specifications.
Standard

NONMETALLIC GASKETS FOR GENERAL AUTOMOTIVE PURPOSES

1963-04-01
HISTORICAL
J90A_196304
These specifications for SAE J90 are intended to define the basic properties of commercial nonmetallic gasketing materials commonly used in automotive applications. These include materials composed of asbestos or other inorganic fibers, cork, or cellulose or other organic fibers, in combination with various binders or impregnants. Rubber compounds without fibrous or cork reinforcement are not included since they are covered in SAE Standard, Specifications for Elastomer Compounds for Automotive Applications—SAE J14, and in ASTM D 735-61T. Although the test methods and values are designed to describe the basic properties of the material in each category, they do not define all of, the properties which govern gasket performance. Caution should, therefore, be exercised in using these specifications as a basis for the selection of materials.
X