Refine Your Search

Topic

Search Results

Standard

Field Viscosity Test for Thickened Aircraft Anti-Icing Fluids

2016-06-09
HISTORICAL
AIR5704
This SAE Aerospace Information Report (AIR) provides a description of a screening method for use in the field for verifying an AMS 1428 anti-icing fluid is above its minimum low shear viscosity as published with holdover time guidelines. The test will determine if the fluid is (a) satisfactory, (b) unsatisfactory, or (c) borderline needing more advanced viscometry testing. Other field tests may be required to determine if an anti-icing fluid is useable, such as refractive index, appearance or other tests as may be recommended by the fluid manufacturer.
Standard

Laboratory Viscosity Measurement of Thickened Aircraft Deicing/Anti-icing Fluids with the Brookfield LV Viscometer

2014-07-22
HISTORICAL
AS9968
This AS describes a standard method for viscosity measurements of thickened (AMS1428) anti-icing fluids. Fluid manufacturers may publish alternate methods for their fluids. In case of conflicting results between the two methods, the manufacturer method takes precedence. To compare viscosities, exactly the same measurement elements (including spindle and container size) must have been used to obtain those viscosities.
Standard

Laboratory Viscosity Measurement of Thickened Aircraft Deicing/Anti-icing Fluids with a Viscometer

2021-07-23
CURRENT
AS9968A
This document describes a standard method for measuring the viscosity of thickened (AMS1428) Type II/III/IV Aircraft Deicing/Anti-icing Fluids. The determination of viscosity for a Non-Newtonian fluid is very sensitive to shear and differences in sample chamber geometry. Even slight differences can have a large effect on measurement results. The test parameters and associated error for this standard are applicable to the Brookfield LV viscometer. A Brookfield LV or equivalent viscometer shall be used. To be considered equivalent, an alternate viscometer must demonstrate statistically equivalent performance, i.e., accuracy and precision when testing thickened (AMS1428) fluids using the same test parameters and conditions.Test parameters and conditions outside of the ranges described within this standard may be used only if they meet minimum limits for precision and accuracy established for the Brookfield LV viscometer.
Standard

Methods and Processes for Evaluation of Aerodynamic Effects of SAE-Qualified Aircraft Ground Deicing/Anti-icing Fluids

2017-01-03
HISTORICAL
ARP6852B
This document describes methods that are known to have been used by aircraft manufacturers to evaluate aircraft aerodynamic performance and handling effects following application of aircraft ground deicing/anti-icing fluids (“fluids”), as well as methods under development. Guidance and insight based upon those experiences are provided, including: Similarity analyses Icing wind tunnel tests Flight tests Computational fluid dynamics and other numerical analyses This document also describes: The history of evaluation of the aerodynamic effects of fluids The effects of fluids on aircraft aerodynamics The testing for aerodynamic acceptability of fluids for SAE and regulatory qualification performed in accordance with AS5900 Additionally, Appendices A to E present individual aircraft manufacturers’ histories and methodologies which substantially contributed to the improvement of knowledge and processes for the evaluation of fluid aerodynamic effects.
Standard

Methods and Processes for Evaluation of Aerodynamic Effects of SAE-Qualified Aircraft Ground Deicing/Anti-icing Fluids

2016-04-20
HISTORICAL
ARP6852A
This document describes methods that are known to have been used by aircraft manufacturers to evaluate aircraft aerodynamic performance and handling effects following application of aircraft ground deicing/anti-icing fluids (“fluids”), as well as methods under development. Guidance and insight based upon those experiences are provided, including: Similarity Analyses Icing Wind Tunnel Tests Flight Tests Computational Fluid Dynamics and other Numerical Analyses This document also describes: The history of evaluation of the aerodynamic effects of fluids The effects of fluids on aircraft aerodynamics The testing for aerodynamic acceptability of fluids for SAE and regulatory qualification performed in accordance with AS5900 Additionally, Appendices A to E present individual aircraft manufacturers’ histories and methodologies which substantially contributed to the improvement of knowledge and processes for the evaluation of fluid aerodynamic effects.
Standard

Methods and Processes for Evaluation of Aerodynamic Effects of SAE-Qualified Aircraft Ground Deicing/Anti-Icing Fluids

2018-10-24
HISTORICAL
ARP6852C
This document describes methods that are known to have been used by aircraft manufacturers to evaluate aircraft aerodynamic performance and handling effects following application of aircraft ground deicing/anti-icing fluids (“fluids”), as well as methods under development. Guidance and insight based upon those experiences are provided, including: Similarity analyses Icing wind tunnel tests Flight tests Computational fluid dynamics and other numerical analyses This document also describes: The history of evaluation of the aerodynamic effects of fluids The effects of fluids on aircraft aerodynamics The testing for aerodynamic acceptability of fluids for SAE and regulatory qualification performed in accordance with AS5900 Additionally, Appendices A to E present individual aircraft manufacturers’ histories and methodologies which substantially contributed to the improvement of knowledge and processes for the evaluation of fluid aerodynamic effects
Standard

Methods and Processes for Evaluation of Aerodynamic Effects of SAE-Qualified Aircraft Ground Deicing/Anti-icing Fluids

2015-12-17
HISTORICAL
ARP6852
This document describes methods that are known to have been used by aircraft manufacturers to evaluate aircraft aerodynamic performance and handling effects following application of aircraft ground deicing/anti-icing fluids (“fluids”), as well as methods under development. Guidance and insight based upon those experiences are provided, including: Similarity Analyses Icing Wind Tunnel Tests Flight Tests Computational Fluid Dynamics and other Numerical Analyses This document also describes: The history of evaluation of the aerodynamic effects of fluids The effects of fluids on aircraft aerodynamics The testing for aerodynamic acceptability of fluids for SAE and regulatory qualification performed in accordance with AS5900 NOTE: This document is applicable for fluids that are “qualified” to (i.e., have passed) the tests and other standards prescribed in AMS1424 or AMS1428 and are properly used in accordance with ARP4737.
Standard

Fluid, Aircraft Deicing/Anti-Icing, SAE Type I

2020-11-18
HISTORICAL
AMS1424R
This foundation specification (AMS1424R) and its associated category specifications (AMS1424/1 and AMS1424/2) cover a deicing/anti-icing material in the form of a fluid.
Standard

Fluid, Aircraft Deicing/Anti-Icing, SAE Type I

2023-07-03
CURRENT
AMS1424S
This foundation specification (AMS1424S) and its associated category specifications (AMS1424/1 and AMS1424/2) cover a deicing/anti-icing material in the form of a fluid.
X