Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Design Analysis of High Power Density Additively Manufactured Induction Motor

2016-09-20
2016-01-2061
Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
Standard

LOGICAL SOFTWARE PART PACKAGING FOR TRANSPORT

2020-11-16
CURRENT
ARINC641-1
The purpose of this standard is to provide a method for packaging aircraft software parts for distribution using contemporary media or by electronic distribution. This project intends to standardize and provide guidance for the storage of floppy based software, currently packaged in media set parts. This standard format can be then stored or distributed on a single physical media member (CD-ROM), or by electronic crate. The obsolescence of floppy disks drive an urgent need for this guidance.
Video

High Temperature Power Device and Packaging - The Technology Leap to Achieve Cost, Power Density and Reliability Target

2011-11-07
The three major challenges in the power electronics in hybrid and electric vehicles are: System cost, power density and reliability. High temperature power device and packaging technologies increases the power density and reliability while reducing system cost. Advanced Silicon devices with synthesized high-temperature packaging technologies can achieve junction temperature as high as 200C (compared to the present limitation of 150C) eliminating the need for a low-temperature radiator and therefore these devices reduces the system cost. The silicon area needed for a power inverter with high junction temperature capability can be reduced by more than 50 - 75% thereby significantly reducing the packaging space and power device and package cost. Smaller packaging space is highly desired since multiple vehicle platforms can share the same design and therefore reducing the cost further due to economies of scale.
Video

Transesterification of Waste Cooking Oil in Presence of Crushed Seashell as a Support for Solid Heterogeneous Catalyst

2011-12-05
Developing relatively cheap and widely available resources for heterogeneous solid catalyst synthesis is a promising approach for biodiesel fuel industry. Seashell which is essentially calcium carbonate can be used as a basic support for transesterification heterogeneous catalysts. In the present investigation, the alcoholysis of waste frying oil has been carried out using seashell-supported K3 PO4 as solid catalyst. Presenter Essam Oun Al-Zaini, PhD student, UNSW
Video

Plug-In Charging Systems Monitoring

2012-02-01
Low Voltage Electric Drives are becoming very attractive for various applications in the Turf, Construction and Agricultural products being engineered today. Determining what the Customer Support Requirements are for Maintenance and Repair for the Life Cycle of the products is critical to the initial design process. Presenter Russell Christ
Video

Evaluation of a NOx Transient Response Method for OBD of SCR Catalysts

2012-01-30
OBD requirements for aftertreatment system components require monitoring of the individual system components. One such component can be an NH3-SCR catalyst for NOx reduction. An OBD method that has been suggested is to generate positive or negative spikes in the inlet NH3 concentration, and monitor the outlet NOx transient response. A slow response indicates that the catalyst is maintaining its NH3 storage capacity, and therefore it is probably not degraded. A fast response indicates the catalyst has lost NH3 storage capacity, and may be degraded. The purpose of the work performed at Southwest Research Institute was to assess this approach for feasibility, effectiveness and practicality. The presentation will describe the work performed, results obtained, and implications for applying this method in test laboratory and real-world situations. Presenter Gordon J. Bartley, Southwest Research Institute
Video

Monitoring NO2 Production of a Diesel Oxidation Catalyst

2012-01-24
A combination of laboratory reactor measurements and vehicle FTP testing has been combined to demonstrate a method for diagnosing the formation of NO2 from a diesel oxidation catalyst (DOC). Using small cores from a production DOC and simulated diesel exhaust, the laboratory reactor experiments are used to support a model for DOC chemical reaction kinetics. The model we propose shows that the ability to produce NO2 is chemically linked to the ability of the catalyst to oxidize hydrocarbon (HC). For thermally damaged DOCs, loss of the HC oxidation function is simultaneous with loss of the NO2 production function. Since HC oxidation is the source of heat generated in the DOC under regeneration conditions, we conclude that a diagnostic of the DOC exotherm is able to detect the failure of the DOC to produce NO2. Vehicle emissions data from a 6.6 L Duramax HD pick-up with DOC of various levels of thermal degradation is provided to support the diagnostic concept.
Video

SCR Deactivation Kinetics for Model-Based Control and Accelerated Aging Applications

2012-06-18
This paper forms the third of a series and presents results obtained during the testing and development phase of a dedicated range extender engine designed for use in a compact class vehicle. The first paper in this series used real world drive logs to identify usage patterns of such vehicles and a driveline model was used to determine the power output requirements of a range extender engine for this application. The second paper presented the results of a design study. Key attributes for the engine were identified, these being minimum package volume, low weight, low cost, and good NVH. A description of the selection process for identifying the appropriate engine technology to satisfy these attributes was given and the resulting design highlights were described. The paper concluded with a presentation of the resulting specification and design highlights of the engine. This paper will present the resulting engine performance characteristics.
Video

High Volume Production of Fiber Reinforced Thermoplastic Parts

2012-03-23
Presented by: Dan Ott Web Industries Director, Business Development, Advanced Composites Market With the growth of Fiber Placement technology as a preferred automation technology in aerospace manufacturing and the rapid growth of new production line installations, it is crucial to provide material in a form which meets all necessary specifications and supports the optimum productivity available from this major capital investment made by the producer of the parts. Achieving these goals happnes when the part designer, AFP machine builder, and the slit tape producer design the best process and format which provides smooth, efficient and rapid delivery of the prepreg slit tape to the Fiber Placement laydown head. Tape size (width), slit width tolerance, spool shape and size, density of prepreg on the spool, spool change-over and handling processes all play a factor in productivity, and creating (or inhibiting) the best ROI on a full-scale AFP production line.
Video

Prepreg Slit Tape and Fiber Placement: Developing High Performance Material Delivery Systems for High-Output AFP Lines

2012-03-23
There are worldwide activities in developing guidelines and standards for fiber optic sensors. Fiber optic sensors (FOS) are increasingly demanded for structural health monitoring purposes and for measurement of physical and chemical quantities because of their specific features. However, they are not yet widely established for practical use due to a lack of guidelines and confirmed standards. Therefore, there are few groups worldwide which are very active in developing standards for use of FOS in different fields, particularly driven from aircraft industry, oil industry or the necessity to provide sensor systems for health monitoring of structures with a certain level of risk. The benefits of guidelines and/or standards on the way to well-validated and well-specified sensor systems will be presented by means of related examples. The presentation will also give an overview on the state-of-the-art and most relevant activities. Results achieved are discussed.
Video

GetConnected. - SAE 2012 World Congress

2012-04-17
The SAE 2012 World Congress theme, Get Connected, represents the new and diverse connections that will drive significant advancements in the auto industry of tomorrow. Not only does the theme symbolize literal connections, such as those between vehicles, infrastructure, the Internet, and the nation's electrical grid, but also demonstrates the most fundamental of connections; the connections and relationships between engineers who are developing the next generation vehicle technology. From OEMs to suppliers, across academia and governments, connecting to one another and using these connections to share ideas and expertise - in both healthy competition and in partnership - will be the catalyst of forthcoming innovation and the auto industry's basis to continued future success. GetConnected: SAE 2012 World Congress April 24-26, 2012 Cobo Center, Detroit, Michigan, USA Start connecting today. Vist www.sae.org/congress for more information.
Video

Development of Scratch Resistant Clear Coat for Automotive

2012-05-23
Scratch resistance is one of the most important customer requirements for automotive painting. Scratches occur as a result of a load being imposed on a paint film, which then destroys or deforms it. In order to improve the scratch resistance properties of clear coat, a specially developed molecular that act to accelerate closslinking reaction was added to the clear coat main resin. This developed molecular facilitates closslinking between multiple molecules and creates an unprecedentedly fine molecular structure. The result is a soft, highly elastic, and durable clear coat with improved resistance to light and acid as well as enhanced deformation recovery properties. It requires no special maintenance, prevents luster degradation caused by surface scratches and helps to prolong new-car color and gloss. Developmental Clear Coat is introduced into the flagship of the Lexus range - the LS as Self-restoring Coat in 2009. Presenter Junya Ogawa, Developmental Center
Video

Development and Demonstration of a Low Emissions Four-Stroke Outboard Marine Engine Utilizing Catalyst Technology

2012-06-18
A conceptual project aimed at understanding the fundamental design considerations concerning the implementation of catalyst systems on outboard marine engines was carried out by Mercury Marine, with the support of the California Air Resources Board. In order to keep a reasonable project scope, only electronic fuel injected four-stroke outboards were considered. While they represent a significant portion of the total number of outboard engines sold in the United States, carbureted four-strokes and direct injected two-strokes pose their own sets of design constraints and were considered to be outside the scope of this study. Recently, three-way catalyst based exhaust emissions aftertreatment systems have been introduced into series production on sterndrive and inboard marine spark ignition engines in North America. The integration of catalyst systems on outboards is much more challenging than on these other marine propulsion alternatives.
Video

SCR Deactivation Study for OBD Applications

2012-06-18
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications [1,2,3,4]. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH3) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH3 transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Video

Development of a 3rd Generation SCR NH3-Direct Dosing System for Highly Efficient DeNOx

2012-06-18
In this project funded by the Bayerische Forschungsstiftung two fundamental investigations had been carried out: first a new N-rich liquid ammonia precursor solution based on guanidine salts had been completely characterized and secondly a new type of side-flow reactor for the controlled catalytic decomposition of aqueous NH3 precursor to ammonia gas has been designed, applied and tested in a 3 liter passenger car diesel engine. Guanidine salts came into the focus due to the fact of a high nitrogen-content derivate of urea (figure 1). Specially guanidinium formate has shown extraordinary solubility in water (more than 6 kg per 1 liter water at room temperature) and therefore a possible high ammonia potential per liter solution compared to the classical 32.5% aqueous urea solution (AUS32) standardized in ISO 22241 and known as DEF (diesel emission fluid), ARLA32 or AdBlue®. Additionally a guanidine based formulation could be realized with high freezing stability down to almost ?30 °C (?
X