Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

High Efficiency, Low Emissions RCCI Combustion by Use of a Fuel Additive

2010-10-25
2010-01-2167
Heavy-duty engine experiments were conducted to explore reactivity controlled compression ignition (RCCI) combustion through addition of the cetane improver di-tert-butyl peroxide (DTBP) to pump gasoline. Unlike previous diesel/gasoline dual-fuel operation of RCCI combustion, the present study investigates the feasibility of using a single fuel stock (gasoline) as the basis for both high reactivity and low reactivity fuels. The strategy consisted of port fuel injection of gasoline and direct injection of the same gasoline doped with a small volume percent addition of DTBP. With 1.75% DTBP by volume added to only the direct-injected fuel (which accounts for approximately 0.2% of the total fueling) it was found that the additized gasoline behaved similarly to diesel fuel, allowing for efficient RCCI combustion. The single fuel results with DTBP were compared to previous high-thermal efficiency, low-emissions results with port injection of gasoline and direct injections of diesel.
Journal Article

Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending

2009-11-02
2009-01-2647
This study investigates the potential of controlling premixed charge compression ignition (PCCI and HCCI) combustion strategies by varying fuel reactivity. In-cylinder fuel blending using port fuel injection of gasoline and early cycle direct injection of diesel fuel was used for combustion phasing control at both high and low engine loads and was also effective to control the rate of pressure rise. The first part of the study used the KIVA-CHEMKIN code and a reduced primary reference fuel (PRF) mechanism to suggest optimized fuel blends and EGR combinations for HCCI operation at two engine loads (6 and 11 bar net IMEP). It was found that the minimum fuel consumption could not be achieved using either neat diesel fuel or neat gasoline alone, and that the optimal fuel reactivity required decreased with increasing load. For example, at 11 bar net IMEP, the optimum fuel blend and EGR rate for HCCI operation was found to be PRF 80 and 50%, respectively.
Journal Article

An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine

2010-04-12
2010-01-0864
This study investigates the potential of controlling premixed charge compression ignition (PCCI) combustion strategies by varying fuel reactivity. In-cylinder fuel blending using port fuel injection of gasoline and early cycle, direct-injection of diesel fuel was used for combustion phasing control at a medium engine load of 9 bar net IMEP and was also found to be effective to prevent excessive rates of pressure rise. Parameters used in the experiments were guided from the KIVA-CHEMKIN code with a reduced primary reference fuel (PRF) mechanism including injection timings, fuel percentages, and intake valve closing (IVC) timings for dual-fuel PCCI combustion. The engine experiments were conducted with a conventional common rail injector (i.e., wide angle and large nozzle hole) and demonstrated control and versatility of dual-fuel PCCI combustion with the proper fuel blend, SOI and IVC timings.
Journal Article

Clean Diesel Combustion by Means of the HCPC Concept

2010-04-12
2010-01-1256
Homogeneous-charge, compression-ignition (HCCI) combustion is triggered by spontaneous ignition in dilute homogeneous mixtures. The combustion rate must be reduced by suitable solutions such as high rates of Exhaust Gas Recirculation (EGR) and/or lean mixtures. HCCI is considered a very effective way to reduce engine pollutant emissions, however only a few HCCI engines have entered into production. HCCI combustion currently cannot be extended to the whole engine operating range, especially to high loads, since the use of EGR displaces air from the cylinder, limiting engine mean effective pressure, thus the engine must be able to operate also in conventional mode. This paper concerns a study of an innovative concept to control HCCI combustion in diesel-fuelled engines. The concept consists in forming a pre-compressed homogeneous charge outside the cylinder and gradually admitting it into the cylinder during the combustion process.
Journal Article

Effects of Biofuel Blends on RCCI Combustion in a Light-Duty, Multi-Cylinder Diesel Engine

2013-04-08
2013-01-1653
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines [1, 2, 3, 4, 5, 6]. The current study investigates RCCI operation in a light-duty multi-cylinder engine over a wide number of operating points representing vehicle operation over the US EPA FTP test. Similarly, previous RCCI engine experiments have used petroleum based fuels such as ultra-low sulfur diesel fuel (ULSD) and gasoline, with some work done using high percentages of biofuels, namely E85 [7]. The current study was conducted to examine RCCI performance with moderate biofuel blends, such as E20 and B20, as compared to conventional gasoline and ULSD.
Journal Article

Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

2014-04-01
2014-01-1325
The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5°CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition.
Journal Article

Experimental Investigation of Piston Heat Transfer in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition, and Reactivity Controlled Compression Ignition Combustion Regimes

2014-04-01
2014-01-1182
An experimental study has been conducted to provide insight into heat transfer to the piston of a light-duty single-cylinder research engine under Conventional Diesel (CDC), Homogeneous Charge Compression Ignition (HCCI), and Reactivity Controlled Compression Ignition (RCCI) combustion regimes. Two fast-response surface thermocouples embedded in the piston top measured transient temperature. A commercial wireless telemetry system was used to transmit thermocouple signals from the moving piston. A detailed comparison was made between the different combustion regimes at a range of engine speed and load conditions. The closed-cycle integrated and peak heat transfer rates were found to be lower for HCCI and RCCI when compared to CDC. Under HCCI operation, the peak heat transfer rate showed sensitivity to the 50% burn location.
Journal Article

Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver

2015-04-14
2015-01-0850
Reactivity Controlled Compression Ignition (RCCI) has been shown to be an attractive concept to achieve clean and high efficiency combustion. RCCI can be realized by applying two fuels with different reactivities, e.g., diesel and gasoline. This motivates the idea of using a single low reactivity fuel and direct injection (DI) of the same fuel blended with a small amount of cetane improver to achieve RCCI combustion. In the current study, numerical investigation was conducted to simulate RCCI and HCCI combustion and emissions with various fuels, including gasoline/diesel, iso-butanol/diesel and iso-butanol/iso-butanol+di-tert-butyl peroxide (DTBP) cetane improver. A reduced Primary Reference Fuel (PRF)-iso-butanol-DTBP mechanism was formulated and coupled with the KIVA computational fluid dynamic (CFD) code to predict the combustion and emissions of these fuels under different operating conditions in a heavy duty diesel engine.
Journal Article

Multi-Dimensional-Modeling-Based Development of a Novel 2-Zone Combustion Chamber Applied to Reactivity Controlled Compression Ignition Combustion

2015-04-14
2015-01-0840
A novel 2-zone combustion chamber concept (patent pending) was developed using multi-dimensional modeling. At minimum volume, an axial projection in the piston divides the volume into distinct zones joined by a communication channel. The projection provides a means to control the mixture formation and combustion phasing within each zone. The novel combustion system was applied to reactivity controlled compression ignition (RCCI) combustion in both light-duty and heavy-duty diesel engines. Results from the study of an 8.8 bar BMEP, 2600 RPM operating condition are presented for the light-duty engine. The results from the heavy-duty engine are at an 18.1 bar BMEP, 1200 RPM operating condition. The effect of several major design features were investigated including the volume split between the inner and outer combustion chamber volumes, the clearance (squish) height, and the top ring land (crevice) volume.
Journal Article

Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

2015-04-14
2015-01-0855
The focus of the present study was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over a variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition.
Journal Article

Experiments and Modeling of Adaptive Injection Strategies (AIS) in Low Emissions Diesel Engines

2009-04-20
2009-01-0127
Homogeneous Charge Compression Ignition (HCCI) has been shown as a promising technique for simultaneous NOx and soot reduction while maintaining diesel-like efficiency. Although HCCI has been shown to yield very low emissions levels, spray-wall impingement and high pressure rise rates can be problematic due to the early injection timings necessary for certain HCCI operations. To address spray-wall impingement, an Adaptive Injection Strategy (AIS) was employed. This strategy uses multiple pulses at both low and high injection pressures to prepare an optimal in-cylinder mixture. A unique Variable Pressure Pulse (VPP) was developed to investigate the AIS concept experimentally. The VPP has the capability of delivering multiple injections at both low and high injection pressures (∼100 bar and ∼1000 bar respectively) through a single injector in the same engine cycle. Comparisons were made between model predictions and engine experiments using the VPP system.
Journal Article

Modeling the Effects of In-Cylinder Flows on HSDI Diesel Engine Performance and Emissions

2008-04-14
2008-01-0649
In the present work the three-dimensional KIVA CFD code was used to simulate the combustion process in a HSDI diesel engine. State-of-the-art models, including the KH-RT spray breakup model, the RNG k-ε turbulence model, and a n-heptane reduced chemistry including reduced GRI NOx mechanism were used. The performances of two combustion models, KIVA-CHEMKIN and GAMUT (KIVA-CHEMKIN-G), coupled with 2-step and multi-step phenomenological soot models were compared. The numerical results were compared with available experimental data obtained from an optically accessible HSDI engine and good agreement was obtained. To assess the effects of the in-cylinder flow field on combustion and emissions, off-centered swirl flows were also considered. In these studies, the swirl center was initialized at different positions in the chamber for different cases to simulate the effects of different intake flow arrangements.
Journal Article

Effects of Fuel Physical Properties on Diesel Engine Combustion using Diesel and Bio-diesel Fuels

2008-04-14
2008-01-1379
A computational study using multi-dimensional CFD modeling was performed to investigate the effects of physical properties on diesel engine combustion characteristics with bio-diesel fuels. Properties of typical bio-diesel fuels that were either calculated or measured are used in the study and the simulation results are compared with those of conventional diesel fuels. The sensitivity of the computational results to individual physical properties is also investigated, and the results provide information about the desirable characteristics of the blended fuels. The properties considered in the study include liquid density, vapor pressure, surface tension, liquid viscosity, liquid thermal conductivity, liquid specific heat, latent heat, vapor specific heat, vapor diffusion coefficient, vapor viscosity and vapor thermal conductivity. The results show significant effects of the fuel physical properties on ignition delay and burning rates at various engine operating conditions.
Journal Article

Effects of Piston Bowl Geometry on Mixture Development and Late-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2008-04-14
2008-01-1330
Low-temperature combustion (LTC) strategies for diesel engines are of increasing interest because of their potential to significantly reduce particulate matter (PM) and nitrogen oxide (NOx) emissions. LTC with late fuel injection further offers the benefit of combustion phasing control because ignition is closely coupled to the fuel injection event. But with a short ignition-delay, fuel jet mixing processes must be rapid to achieve adequate premixing before ignition. In the current study, mixing and pollutant formation of late-injection LTC are studied in a single-cylinder, direct-injection, optically accessible heavy-duty diesel engine using three laser-based imaging diagnostics. Simultaneous planar laser-induced fluorescence of the hydroxyl radical (OH) and combined formaldehyde (H2CO) and polycyclic aromatic hydrocarbons (PAH) are compared with vapor-fuel concentration measurements from a non-combusting condition.
Journal Article

Development of an Improved NOx Reaction Mechanism for Low Temperature Diesel Combustion Modeling

2008-10-06
2008-01-2413
The development of a new Nitric Oxide (NOx) reaction mechanism has been conducted by adding species, including hydrogen cyanide (HCN) and the CH radical to a reduced chemistry diesel combustion model. The additional chemical reactions were added to the ERC's reduced 12-step NOx mechanism, which consists of N, NO, N2O, and NO2. The new NOx mechanism was implemented into the KIVA/ERC-CHEMKIN code and was found to be able to predict the experimentally observed trend that the amount of engine-out NOx decreases as engine load is increased, which is not reproduced by the current reduced NOx mechanism. HCN and CH were found to be species that bridge CxHy products and N radicals via the reaction CH+N2→HCN+N under high equivalence ratio conditions, and Zeldovich NO formation is suppressed by the formation of HCN, a species in the Fenimore NO formation pathway. The additional species and reactions were also found to influence the prediction of engine-out soot emissions.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

2011-04-12
2011-01-1182
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
Journal Article

Diesel Engine Size Scaling at Medium Load without EGR

2011-04-12
2011-01-1384
Several diffusion combustion scaling models were experimentally tested in two geometrically similar single-cylinder diesel engines with a bore diameter ratio of 1.7. Assuming that the engines have the same in-cylinder thermodynamic conditions and equivalence ratio, the combustion models primarily change the fuel injection pressure and engine speed in order to attain similar performance and emissions. The models tested include an extended scaling model, which scales diffusion flame lift-off length and jet spray penetration; a simple scaling model, which only scales spray penetration at equal mean piston speed; and a same speed scaling model, which holds crankshaft rotational velocity constant while also scaling spray penetration. Successfully scaling diffusion combustion proved difficult to accomplish because of apparent differences that remained in the fuel-air mixing and heat transfer processes.
Journal Article

Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines

2011-04-12
2011-01-0357
Single-cylinder engine experiments were used to investigate a fuel reactivity controlled compression ignition (RCCI) concept in both light- and heavy-duty engines and comparisons were made between the two engine classes. It was found that with only small changes in the injection parameters, the combustion characteristics of the heavy-duty engine could be adequately reproduced in the light-duty engine. Comparisons of the emissions and performance showed that both engines can simultaneously achieve NOx below 0.05 g/kW-hr, soot below 0.01 g/kW-hr, ringing intensity below 4 MW/m2, and gross indicated efficiencies above 50 per cent. However, it was found that the peak gross indicated efficiency of the baseline light-duty engine was approximately 7 per cent lower than the heavy-duty engine. The energy balances of the two engines were compared and it was found that the largest factor contributing to the lower efficiency of the light-duty engine was increased heat transfer losses.
Journal Article

Computational Optimization of a Heavy-Duty Compression Ignition Engine Fueled with Conventional Gasoline

2011-04-12
2011-01-0356
The potential of low temperature combustion to yield low NOx and soot while maintaining diesel-like thermal efficiencies has been demonstrated through countless studies. Methods of achieving low temperature combustion are just as numerous and they range from using high cetane number fuels, like diesel, with large amounts of exhaust gas recirculation, to completely premixing a high octane number fuel, like gasoline, and approaching an HCCI-like condition. The potential of operating a heavy-duty compression ignition engine fueled with conventional gasoline in a partially premixed combustion mode to have high thermal efficiency and low emissions has been demonstrated in this study. The objective of this work was to optimize the engine using computational tools. The KIVA3V-CHEMKIN code, a multi-dimensional engine CFD model was coupled to a Nondominated Sorting Genetic Algorithm (NSGA II), which is a multi-objective genetic algorithm.
Journal Article

Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load

2011-04-12
2011-01-0361
Reactivity Controlled Compression Ignition combustion (RCCI) has been demonstrated at mid to high loads [1, 2, 3, 4, 5, 6] as a method to operate an internal combustion engine that produces low NOx and low PM emissions with high thermal efficiency. The current study investigates RCCI engine operation at loads of 2 and 4.5 bar gross IMEP at engine speeds between 800 and 1700 rev/min. This load range was selected to cover the range from the previous work of 6 bar gIMEP down to an off-idle load at 2 bar. The fueling strategy for the low load investigation consisted of in-cylinder fuel blending using port-fuel-injection of gasoline and early cycle, direct-injection of either diesel fuel or gasoline doped with 3.5% by volume 2-EHN (2-ethylhexyl nitrate). At these loads, engine operating conditions such as inlet air temperature, port fuel percentage, and engine speed were varied to investigate their effect on combustion.
X