Refine Your Search

Topic

Search Results

Journal Article

Experimental Investigation of the Benefits of Cooled and Extra-cooled Low-Pressure EGR on a Light Duty Diesel Engine Performance

2009-09-13
2009-24-0126
The present paper describes an experimental study on the application of a Low Pressure EGR system, equipped with an high efficiency cooler, to a LD diesel engine operating with both conventional combustion and PCCI mode. The research activity is aimed to carry out an analysis of the potentiality of the cooling (with engine water at 90°C) and super-cooling (with external water at 20°C) of the low pressure EGR flow gas on the simultaneous reduction of fuel consumption and pollutant emissions. The effects were evaluated running the engine with diesel conventional combustion and PCCI mode in several engine operating points. The employed engine was a 4-cyliders LD CR diesel engine of two liters of displacement at the state of art of the current engine technology. The overall results identified benefits on both the fuel consumption and emissions with the use of a low pressure EGR system with respect to the “classical” high pressure EGR one.
Journal Article

Experimental Evaluation of Compression Ratio Influence on the Performance of a Dual-Fuel Methane-Diesel Light-Duty Engine

2015-09-06
2015-24-2460
The paper reports an experimental study on the effect of compression ratio variation on the performance and pollutant emissions of a single-cylinder light-duty research diesel engine operating in DF mode. The architecture of the combustion system as well as the injection system represents the state-of-the-art of the automotive diesel technology. Two pistons with different bowl volume were selected for the experimental campaign, corresponding to two CR values: 16.5 and 14.5. The designs of the piston bowls were carefully performed with the 3D simulation in order to maintain the same air flow structure at the piston top dead center, thus keeping the same in-cylinder flow characteristics versus CR. The engine tests choice was performed to be representative of actual working conditions of an automotive light-duty diesel engine.
Journal Article

Functional Requirements to Exceed the 100 kW/l Milestone for High Power Density Automotive Diesel Engines

2017-09-04
2017-24-0072
The paper describes the challenges and results achieved in developing a new high-speed Diesel combustion system capable of exceeding the imaginative threshold of 100 kW/l. High-performance, state-of-art prototype components from automotive diesel technology were provided in order to set-up a single-cylinder research engine demonstrator. Key design parameters were identified in terms boost, engine speed, fuel injection pressure and injector nozzle flow rates. In this regard, an advanced piezo injection system capable of 3000 bar of maximum injection pressure was selected, coupled to a robust base engine featuring ω-shaped combustion bowl and low swirl intake ports. The matching among the above-described elements has been thoroughly examined and experimentally parameterized.
Technical Paper

Experimental and Numerical Assessment of Active Pre-chamber Ignition in Heavy Duty Natural Gas Stationary Engine

2020-04-14
2020-01-0819
Gas engines (fuelled with CNG, LNG or Biogas) for generation of power and heat are, to this date, taking up larger shares of the market with respect to diesel engines. In order to meet the limit imposed by the TA-Luft regulations on stationary engines, lean combustion represents a viable solution for achieving lower emissions as well as efficiency levels comparable with diesel engines. Leaner mixtures however affect the combustion stability as the flame propagation velocity and consequently heat release rate are slowed down. As a strategy to deliver higher ignition energy, an active pre-chamber may be used. This work focuses on assessing the performance of a pre-chamber combustion configuration in a stationary heavy-duty engine for power generation, operating at different loads, air-to-fuel ratios and spark timings.
Journal Article

Determination of Oxidation Characteristics and Studies on the Feasibility of Metallic Nanoparticles Combustion Under ICE-Like Conditions

2011-09-11
2011-24-0105
The present work relates to the investigation of the basic oxidation characteristics of iron and aluminium nanoparticles as well as the feasibility of their combustion under both Internal Combustion Engine (ICE)-like and real engine conditions. Based on a series of proof-of-concept experiments, combustion was found to be feasible taking place in a controllable way and bearing similarities to the respective case of conventional fuels. These studies were complimented by relevant in-situ and ex-situ/post-analysis, in order to elaborate the fundamental phenomena occurring during combustion as well as the extent and ‘quality’ of the process. The oxidation mechanisms of the two metallic fuels appear different and -as expected- the energy release during combustion of aluminium is significantly higher than that released in the case of iron.
Journal Article

The Key Role of the Closed-loop Combustion Control for Exploiting the Potential of Biodiesel in a Modern Diesel Engine for Passenger Car Applications

2011-06-09
2011-37-0005
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the capability of GM Combustion Closed-Loop Control (CLCC) in enabling seamless operation with high biodiesel blending levels in a modern diesel engine for passenger car applications. As a matter of fact, fuelling modern electronically-controlled diesel engines with high blends of biodiesel leads to a performance reduction of about 12-15% at rated power and up to 30% in the low-end torque, while increasing significantly the engine-out NOx emissions. These effects are both due to the interaction of the biodiesel properties with the control logic of the electronic control unit, which is calibrated for diesel operation. However, as the authors previously demonstrated, if engine calibration is re-tuned for biodiesel fuelling, the above mentioned drawbacks can be compensated and the biodiesel environmental inner qualities can be fully deployed.
Journal Article

Experimental Characterization of Diesel Combustion Using Glycerol Derived Ethers Mixtures

2013-09-08
2013-24-0104
In this paper the characteristics of a mixture of glycerol-based ethers usable in a compression ignition engine are investigated, in terms of efficiency and emissions. Alternative pathways for the energetic exploitation of biodiesel derived glycerol became of increasing interest as the biodiesel production was increased worldwide. Because of its detrimental physical and chemical properties, raw glycerol is hardly usable in conventional internal combustion engines (ICE). However, etherification of glycerol with tert-butyl alcohol and isobutylene allows obtaining a mixture mainly composed of higher glycerol ethers (GEM) suitable for compression ignition engines. Thus, the aim of this research study was to test a mixture of mono-, di- and tri-tert-butyl ethers of glycerol in blend with a commercial diesel fuel in a compression ignition engine, evaluating the fuel efficiency and the impact on the pollutant emissions.
Technical Paper

Experimental Analysis of the Operating Parameter Influence on the application of Low Temperature Combustion in the Modern Diesel Engines

2007-07-23
2007-01-1839
The present paper describes the effects of some operating parameters on the performance of a single cylinder research engine when it runs under Low Temperature Combustion (LTC) conditions. Aim of the experimental work was to explore the potential of the control of each parameter on the improvement of LTC application to the modern LD diesel engines for passenger cars. In particular, the effects on LTC performance of the following operating parameters in different engine test points were analyzed: intake air temperature, exhaust EGR cooler temperature, intake pipe pressure, exhaust pipe pressure and swirl ratio. Some parameters have shown a particular influence on the improvement of EGR tolerability for maximum NOx reduction preserving fuel consumption and smoke, while others have evidenced poor sensitivity.
Technical Paper

Compression Ratio Influence on the Performance of an Advanced Single-Cylinder Diesel Engine Operating in Conventional and Low Temperature Combustion Mode

2008-06-23
2008-01-1678
The present paper describes a detailed experimental analysis on the effect of the compression ratio on the performance of a single-cylinder research diesel engine operating with both conventional combustion and Low Temperature Combustion mode for low NOx emissions. The single-cylinder engine was developed with the same combustion system architecture of the four-cylinder FIAT 1.9 liter Multi-Jet. Starting from an engine configuration with a compression ratio of 16.5, the compression ratio was reduced to 14.5. For both the geometric configurations, engine performance was evaluated in terms of thermodynamic parameters, emissions and fuel consumption in some operating test points representative of the engine behavior running on the NEDC cycle.
Technical Paper

The Effect of “Clean and Cold” EGR on the Improvement of Low Temperature Combustion Performance in a Single Cylinder Research Diesel Engine

2008-04-14
2008-01-0650
In the present paper, the effect of the clean and cold EGR flow on the performance of a diesel engine running under conventional and Low Temperature Combustion conditions is investigated by means of experimental tests on a single-cylinder research engine. The engine layout was “ad hoc” designed to isolate the effect of the clean and cold recirculated gas flow on the combustion quality. The results have shown that the thermodynamic temperature is the main factor affecting the engine performances, while the effect of a cleaner EGR flow, in terms of lower smoke and unburned compounds (HC and CO), is negligible.
Technical Paper

Parametric Analysis of the Effect of Pilot Quantity, Combustion Phasing and EGR on Efficiencies of a Gasoline PPC Light-Duty Engine

2017-09-04
2017-24-0084
In this paper, a parametric analysis on the main engine calibration parameters applied on gasoline Partially Premixed Combustion (PPC) is performed. Theoretically, the PPC concept permits to improve both the engine efficiencies and the NOx-soot trade-off simultaneously compared to the conventional diesel combustion. This work is based on the design of experiments (DoE), statistical approach, and investigates on the engine calibration parameters that might affect the efficiencies and the emissions of a gasoline PPC. The full factorial DoE analysis based on three levels and three factors (33 factorial design) is performed at three engine operating conditions of the Worldwide harmonized Light vehicles Test Cycles (WLTC). The pilot quantity (Qpil), the crank angle position when 50% of the total heat is released (CA50), and the exhaust gas recirculation (EGR) factors are considered. The goal is to identify an engine calibration with high efficiency and low emissions.
Technical Paper

Emission Reduction Technologies for the Future Low Emission Rail Diesel Engines: EGR vs SCR

2013-09-08
2013-24-0087
The EU emission standards for new rail Diesel engines are becoming even more stringent. EGR and SCR technologies can both be used to reduce NOx emissions; however, the use of EGR is usually accompanied by an increase in PM emissions and may require a DPF. On the other hand, the use of SCR requires on-board storage of urea. Thus, it is necessary to study these trade-offs in order to understand how these technologies can best be used in rail applications to meet new emission standards. The present study assesses the application of these technologies in Diesel railcars on a quantitative basis using one and three dimensional numerical simulation tools. In particular, the study considers a 560 kW railcar engine with the use of either EGR or SCR based solutions for NOx reduction. The NOx and PM emissions performances are evaluated over the C1 homologation cycle.
Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Technical Paper

Hydrocracked Fossil Oil and Hydrotreated Vegetable Oil (HVO) Effects on Combustion and Emissions Performance of “Torque-Controlled” Diesel Engines

2015-09-06
2015-24-2497
The present paper describes the results of a research activity aimed at studying the potential offered by the use of Hydrocracked fossil oil (HCK) and Hydrotreated Vegetable Oil (HVO) blends as premium fuels for next generation diesel engines. Five fuels have been tested in a light duty four cylinder diesel engine, Euro 5 version, equipped with closed loop control of the combustion. The set of fuels comprises four experimental fuels specifically formulated by blending high cetane HVO and HCK streams and oneEN590-compliant commercial diesel fuel representative of the current market fuel quality. A well consolidated procedure has been carried out to estimate, for the tested fuels, the New European Driving Cycle (NEDC) vehicle performance by means of the specific emissions at steady-state engine operating points.
Technical Paper

Analysis of the Impact of the Dual-Fuel Ethanol-Diesel System on the Size, Morphology, and Chemical Characteristics of the Soot Particles Emitted from a LD Diesel Engine

2014-04-01
2014-01-1613
Nowadays, alcohol fuels are of increasing interest as alternative transportation biofuels even in compression ignition engines because they are oxygenated and producible in a sustainable way. In this paper, the experimental research activity was conducted on a single cylinder research engine provided with a modern architecture and properly modified in a dual-fuel (DF) configuration. Looking at ethanol the as one of the future environmental friendly biofuels experimental campaign was aimed to evaluate in detail the effect of the use of the ethanol as port injected fuel in diesel engine on the size, morphology, reactivity and chemical features of the exhaust emitted soot particles. The engine tests were chosen properly in order to represent actual working conditions of an automotive light-duty diesel engine. A proper engine Dual-Fuel calibration was set-up respecting prefixed limits on in-cylinder peak firing pressure, cylinder pressure rise, fuel efficiency and gaseous emissions.
Technical Paper

Combustion and Emission Characteristics of a Diesel Engine Fuelled with Diesel-LPG Blends

2019-09-09
2019-24-0038
Recently, it has been worth pointing out the relevance of alternative fuels in the improvement of air quality conditions and in the mitigation of global warming. In order to deal with these demands, in recent studies, it has been considered a great variety of alternative fuels. It goes without saying that the alternative fuels industry needs the best of the efficiency with a moderate layout. From this perspective, Liquefied Petroleum Gas (LPG) could represent a valid option, although it is not a renewable fuel. In terms of polluting emissions, the LPG can reduce nitrous oxides and smoke concentrations in the air, a capability that has a relevant importance for the modern pollution legislation. LPG is well known as an alternative fuel for Spark Ignition (SI) engines and, more recently, LPG systems have also been introduced in the Compression Ignition (CI) engines in dual-fuel configuration.
Technical Paper

Development of a Dedicated CNG Three-Way Catalyst Model in 1-D Simulation Platforms

2019-09-09
2019-24-0074
A growing interest towards heavy-duty engines powered with NG, dictated by stringent regulations in terms of emissions, has made it essential to study a specific Three-Way Catalyst (TWC). Oxygen storage phenomena characterize the catalytic converter efficiency under real world driving operating conditions and, consequently, during strong dynamics in Air-to-Fuel ratio (AFR). A numerical “quasi-steady” model has been set-up to simulate the chemical process inside the reactor. A dedicated experimental campaign has been performed in order to evaluate the catalyst response to a defined λ variation, thus providing the data necessary for the numerical model validation. In fact, goal of the present research activity was to investigate the effect of very fast composition transitions of the engine exhaust typical of the mentioned driving conditions (including fuel cutoffs etc.) on the catalyst performance and on related emissions.
Technical Paper

Investigation of the Effect of Compression Ratio on the Combustion Behavior and Emission Performance of HVO Blended Diesel Fuels in a Single-Cylinder Light-Duty Diesel Engine

2015-04-14
2015-01-0898
Hydrotreated vegetable oil (HVO) is a renewable high quality paraffinic diesel that can be obtained by the hydrotreating of a wide range of biomass feedstocks, including vegetable oils, animal fats, waste oils, greases and algal oils. HVO can be used as a drop-in fuel with beneficial effects for the engine and the environment. The main objective of this study was to explore the potential of HVO as a candidate bio blendstock for new experimental formulations of diesel fuel to be used in advanced combustion systems at different compression ratios and at high EGR rates in order to conform to the Euro 6 NOx emission standard. The experiments were carried out in a single-cylinder research engine at three steady-state operating conditions and at three compression ratios (CR) by changing the piston.
Journal Article

Key Fuel Injection System Features for Efficiency Improvement in Future Diesel Passenger Cars

2019-04-02
2019-01-0547
Diesel will continue to be an indispensable energy carrier for the car fleet CO2 emission targets in the short-term. This is particularly relevant for heavy-duty vehicles as for mid-size cars and SUVs. Looking at the latest technology achievements on the after-treatment systems, it can be stated that the concerning about the NOx emission gap between homologation test and real road use is basically solved, while the future challenge for diesel survival is to keep its competitiveness in the CO2 vs cost equation in comparison to other propulsion systems. The development of the combustion system design still represents an important leverage for further efficiency and emissions improvements while keeping the current excellent performance in terms of power density and low-end torque.
Technical Paper

Comparative Analysis of Different Methodologies to Calculate Lambda (λ) Based on Extensive And systemic Experimentation on a Hydrogen Internal Combustion Engine

2023-04-11
2023-01-0340
Hydrogen Internal Combustion Engines (H2-ICEs) are subject to increased attention thanks to their extremely low criteria pollutant emission and near-zero CO2 tailpipe emissions. However, to further minimize exhaust emissions and increase the efficiency of a H2-ICE, it is important to carefully control the relative air-fuel ratio of operation, i.e. Lambda (λ), which will lead in turn to an optimal combustion process. The precise λ control mainly relies upon the methodology to calculate λ on board of the engine, where the availability of reliable sensors specifically-developed for hydrogen combustion is currently limited. In this article, a comparative analysis of different methodologies for the calculation of λ is performed, comparing four methodologies: exhaust gas analysis through a Spindt-Brettschneider approach (λEMI), raw Universal Exhaust Gas Oxygen (λR-UEGO), processed Universal Exhaust Gas Oxygen (λP-UEGO) and speed-density (λSD) outputs.
X