Refine Your Search

Topic

Search Results

Standard

Linear Token Passing Multiplex Data Bus User's Handbook

2012-05-03
CURRENT
AIR4288A
This document is intended to explain, in detail, the rationale behind the features and functions of the AS4074, Linear, Token-passing, Bus (LTPB). The discussions also address the considerations which a system designer should take into account when designing a system using this bus. Other information can be found in these related documents: AIR4271 - Handbook of System Data Communication AS4290 - Validation Test Plan for AS4074
Standard

Linear Token Passing Multiplex Data Bus User's Handbook

2002-01-06
HISTORICAL
AIR4288
This document is intended to explain, in detail, the rationale behind the features and functions of the AS4074, Linear, Token-passing, Bus (LTPB). The discussions also address the considerations which a system designer should take into account when designing a system using this bus. Other information can be found in these related documents:
Standard

Handbook for the Digital Time Division Command/Response Multiplex Data Bus Test Plans

2011-11-15
HISTORICAL
AIR4295
This document contains guidance for using SAE publications, AS4112 through AS4117 (MIL-STD-1553 related Test Plans). Included herein are the referenced test plan paragraphs numbers and titles, the purpose of the test, the associated MIL-STD-1553 paragraph, commentary concerning test methods and rationale, and instrumentation requirements.
Standard

Handbook for the Digital Time Division Command/Response Multiplex Data Bus Test Plans

2016-10-21
CURRENT
AIR4295A
This document contains guidance for using SAE publications, AS4112 through AS4117 (MIL-STD-1553 related Test Plans). Included herein are the referenced test plan paragraphs numbers and titles, the purpose of the test, the associated MIL-STD-1553 paragraph, commentary concerning test methods and rationale, and instrumentation requirements.
Standard

Optical Implementation Relating to the High Speed Ring Bus (HSRB) Standard

2012-05-03
CURRENT
AS4075/1A
This SAE Aerospace Standard (AS) has been prepared by the Ring Implementation Task Group of the SAE AS-2 Committee. It is intended as a companion document to the SAE AS4075 High Speed Ring Bus Standard. While the Standard is intended to provide as complete a description as possible of an HSRB implementation, certain parameters are system-dependent and evolutionary. This document contains those parameters. The text through Table 1 is intended to provide definitions and descriptions applicable to all applications. Table 2 contains specific parameter values for one or more implementations. This table will change as new systems are implemented or new HSRB speed options are defined.
Standard

OPTICAL IMPLEMENTATION RELATING TO THE HIGH SPEED RING BUS (HSRB) STANDARD

1995-01-01
HISTORICAL
AS4075/1
This SAE Aerospace Standard (AS) has been prepared by the Ring Implementation Task Group of the SAE AS-2 Committee. It is intended as a companion document to the SAE AS4075 High Speed Ring Bus Standard. While the Standard is intended to provide as complete a description as possible of an HSRB implementation, certain parameters are system-dependent and evolutionary. This document contains those parameters. The text through Table 1 is intended to provide definitions and descriptions applicable to all applications. Table 2 contains specific parameter values for one or more implementations. This table will change as new systems are implemented or new HSRB speed options are defined.
Standard

Verification Methods for AS5653 Network Controller

2017-10-11
CURRENT
AS6089
This document was prepared by the SAE AS-1A2 Committee to establish techniques for validating the Network Controller (NC) complies with the NC requirements specified in AS5653, Revision B. Note that this verification document only verifies the specific requirements from AS5653 and does not verify all of the requirements invoked by documents that are referenced by AS5653. The procuring authority may require further testing to verify the requirements not explicitly defined in AS5653 and in this verification document.
Standard

Digital Time Division Command/Response Multiplex Data Bus

2017-03-21
CURRENT
AS15531A
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration, that is functionally equivalent to MIL-STD-1553B with Notice 2. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
Standard

Digital Time Division Command/Response Multiplex Data Bus

2011-11-15
HISTORICAL
AS15531
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration, that is functionally equivalent to MIL-STD-1553B with Notice 2. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
Standard

Serial Hi-Rel Ring Network for Aerospace Applications (RingNet)

2014-10-08
CURRENT
AS1393
This standard establishes the design requirements for a fiber optic serial interconnect protocol, topology, and media. The application target for this standard is the interconnection of multiple aerospace sensors, processing resources, bulk storage resources and communications resources onboard aerospace platforms. The standard is for subsystem interconnection, as opposed to intra-backplane connection.
Standard

Verification Methods for AS5653 Network Controller, Network Terminal, and Switch Physical Layer

2018-08-13
CURRENT
AS6260
This document was prepared by the SAE AS-1A2 Committee to establish techniques for verifying that Network Controllers (NCs), Network Terminals (NTs), switches, cables, and connectors comply with the physical layer requirements specified in AS5653B. Note that this verification document only verifies the specific requirements from AS5653B and does not verify all of the requirements invoked by documents that are referenced by AS5653B. The procuring authority may require further testing to verify the requirements not explicitly defined in AS5653B and in this verification document.
Standard

Verification Methods for AS5653 Network Terminal

2019-04-24
CURRENT
AS6088
This document was prepared by the SAE AS-1A2 Committee to establish techniques for validating the Network Terminal (NT) complies with the NT requirements specified in AS5653, Revision B. Note that this verification document only verifies the specific requirements from AS5653 and does not verify all the requirements invoked by documents that are referenced by AS5653. The procuring authority may require further testing to verify the requirements not explicitly defined in AS5653 and in this verification document.
Standard

Type F-2 Fiber Optic Media Interface Characteristics

2011-11-15
HISTORICAL
AS4074/2A
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

Type F-2 Fiber Optic Media Interface Characteristics

2016-10-21
CURRENT
AS4074/2B
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

Type F-1 Fiber Optic Media Interface Characteristics

2016-10-21
CURRENT
AS4074/1B
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

Type F-2 Fiber Optic Media Interface Characteristics

2001-10-01
HISTORICAL
AS4074/2
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

Type F-1 Fiber Optic Media Interface Characteristics

2001-10-01
HISTORICAL
AS4074/1
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

Type F-1 Fiber Optic Media Interface Characteristics

2011-11-15
HISTORICAL
AS4074/1A
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

HIGH SPEED RING BUS (HSRB) STANDARD

1988-08-29
HISTORICAL
AS4075
A fault tolerant, real time high speed data communication standard is defined based on a ring topology and the use of a Token passing access method with distributed control. The requirements for the HSRB standard have been driven predominantly, but not exclusively, by military applications. Particular attention has been given to the need for low message latency, deterministic message priority and comprehensive reconfiguration capabilities. This document contains a definition of the semantics and protocol including delimiters, tokens, message priority, addressing, error detection and recovery schemes; and is written to be independent of bit rate and media. Parameters related to particular media and bit rates are defined in separate documents, the AS4075 slash sheets.
X