Refine Your Search

Search Results

Viewing 1 to 13 of 13
Standard

PASSENGER CAR TIRE PERFORMANCE REQUIREMENTS AND TEST PROCEDURES

1970-05-01
HISTORICAL
J918_197005
This SAE Standard provides minimum performance requirements and accompanying uniform laboratory test procedures for evaluating certain essential characteristics of new tires and newly retreaded tires intended for use on passenger cars. (The requirements published in this SAE Standard pertain to tire sizes currently used on American passenger cars and popular sizes used on imported passenger cars. For related information on tire sizes not listed, contact Society of Automotive Engineers, Inc., Detroit Branch Office, 18121 East Eight Mile Road, East Detroit, Michigan 48021.)
Standard

THE MEASUREMENT OF PASSENGER CAR TIRE ROLLING RESISTANCE

1984-06-01
HISTORICAL
J1270_198406
The force, torque, and power methods of measurement are all in common use and should yield the same test results. Effects of steering, traction, and non-steady-state tire operations are excluded from the recommended practice because they are still in the research stage.
Standard

METHODS FOR TESTING SNAP-IN TUBELESS TIRE VALVES

1997-04-01
HISTORICAL
J1206_199704
This SAE Standard contains recommended test methods for snap-in tubeless tire valves intended for, but not limited to, highway applications. A snap-in valve is a tire valve having a rigid housing adhered to a resilient body designed to retain and seal the valve in the rim hole.
Standard

Methods for Testing Snap-In Tubeless Tire Valves

2018-01-19
CURRENT
J1206_201801
This SAE Standard contains recommended test methods for snap-in tubeless tire valves intended for, but not limited to, highway applications. A snap-in valve is a tire valve having a rigid housing adhered to a resilient body designed to retain and seal the valve in the rim hole.
Standard

Light Vehicle Dry Stopping Distance

2010-05-25
HISTORICAL
J2909_201005
This document establishes best practices to measure vehicle stopping distance on dry asphalt in a straight path of travel intended for the purpose of publishing stopping distance by manufacturers and media organizations. It is recommended that the test method within be adopted for all vehicles less than 10 000 lb (4536 kg) GVWR. This procedure is typically used with initial speeds of 100 km/h and 60 mph, but other speeds may be used.
Standard

Light Vehicle Dry & Wet Stopping Distance Test Procedure

2018-06-12
CURRENT
J2909_201806
This document establishes best practices to measure vehicle stopping distance on dry or wet asphalt in a straight path of travel intended for the purpose of publishing stopping distance by manufacturers and media organizations for vehicles with original equipment tires. It is recommended that the test method within be adopted for all vehicles less than 4536 kg (10000 pounds) GVWR. This procedure is typically used with initial speeds of 100 km/h and 60 mph, but other speeds may be used. Since tires play a significant role in stopping distance, this procedure covers tire types typically used as original equipment on new vehicles including all-season, summer, and all-terrain tires. This document may serve as a procedural guideline for all tire types, but the surface temperature correction formulas in this procedure were developed using all-season tires and may not be applicable to other tire types.
Standard

ROLLING RESISTANCE MEASUREMENT PROCEDURE FOR PASSENGER CAR TIRES

1984-06-01
HISTORICAL
J1269_198406
This recommended practice applies to the laboratory measurement of rolling resistance of pneumatic passenger car tires designed primarily for normal highway service. The procedure applies only to the steady-state operation of free-rolling tires at zero slip and inclination angles; it includes the following three basic methods:
Standard

ROLLING RESISTANCE MEASUREMENT PROCEDURE FOR PASSENGER CAR AND LIGHT TRUCK TIRES

1985-11-01
HISTORICAL
J1269_198511
This Recommended Practice applies to the laboratory measurement of rolling resistance of pneumatic passenger car and light truck tires. The procedure applies only to the steady-state operation of free-rolling tires at zero slip and inclination angles; it includes the following three basic methods:
X