Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Optical Investigation of UHC and CO Sources from Biodiesel Blends in a Light-Duty Diesel Engine Operating in a Partially Premixed Combustion Regime

2010-04-12
2010-01-0862
The influence of soy- and palm-based biofuels on the in-cylinder sources of unburned hydrocarbons (UHC) and carbon monoxide (CO) was investigated in an optically accessible research engine operating in a partially premixed, low-temperature combustion regime. The biofuels were blended with an emissions certification grade diesel fuel and the soy-based biofuel was also tested neat. Cylinder pressure and emissions of UHC, CO, soot, and NOx were obtained to characterize global fuel effects on combustion and emissions. Planar laser-induced fluorescence was used to capture the spatial distribution of fuel and partial oxidation products within the clearance and bowl volumes of the combustion chamber. In addition, late-cycle (30° and 50° aTDC) semi-quantitative CO distributions were measured above the piston within the clearance volume using a deep-UV LIF technique.
Journal Article

An Investigation into the Effects of Fuel Properties and Engine Load on UHC and CO Emissions from a Light-Duty Optical Diesel Engine Operating in a Partially Premixed Combustion Regime

2010-05-05
2010-01-1470
The behavior of the engine-out UHC and CO emissions from a light-duty diesel optical engine operating at two PPCI conditions was investigated for fifteen different fuels, including diesel fuels, biofuel blends, n-heptane-iso-octane mixtures, and n-cetane-HMN mixtures. The two highly dilute (9-10% O₂) early direct injection PPCI conditions included a low speed (1500 RPM) and load (3.0 bar IMEP) case~where the UHC and CO have been found to stem from overly-lean fuel-air mixtures~and a condition with a relatively higher speed (2000 RPM) and load (6.0 bar IMEP)~where globally richer mixtures may lead to different sources of UHC and CO. The main objectives of this work were to explore the general behavior of the UHC and CO emissions from early-injection PPCI combustion and to gain an understanding of how fuel properties and engine load affect the engine-out emissions.
Journal Article

A Detailed Comparison of Emissions and Combustion Performance Between Optical and Metal Single-Cylinder Diesel Engines at Low Temperature Combustion Conditions

2008-04-14
2008-01-1066
A detailed comparison of cylinder pressure derived combustion performance and engine-out emissions is made between an all-metal single-cylinder light-duty diesel engine and a geometrically equivalent engine designed for optical accessibility. The metal and optically accessible single-cylinder engines have the same nominal geometry, including cylinder head, piston bowl shape and valve cutouts, bore, stroke, valve lift profiles, and fuel injection system. The bulk gas thermodynamic state near TDC and load of the two engines are closely matched by adjusting the optical engine intake mass flow and composition, intake temperature, and fueling rate for a highly dilute, low temperature combustion (LTC) operating condition with an intake O2 concentration of 9%. Subsequent start of injection (SOI) sweeps compare the emissions trends of UHC, CO, NOx, and soot, as well as ignition delay and fuel consumption.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

2011-04-12
2011-01-1182
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Journal Article

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

2011-08-30
2011-01-2100
More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number-based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample-handling methods have been implemented in an engine test cell with a spark-ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion.
Technical Paper

Effect of Intake Pressure on Performance and Emissions in an Automotive Diesel Engine Operating in Low Temperature Combustion Regimes

2007-10-29
2007-01-4063
A single-cylinder, light-duty, diesel engine was used to investigate the effect of changes in intake pressure (boost) on engine performance and emissions in low-temperature combustion (LTC) regimes. Two different LTC strategies were examined: a dilution-controlled regime characterized by high rates of exhaust gas recirculation (EGR) with early-injection (roughly 30° BTDC), and a late-injection (near TDC) regime employing moderate EGR levels. For both strategies, moderate (8 bar IMEP) and low (3 bar IMEP) load conditions were tested at intake pressures of 1.0, 1.5, and 2.0 bar. For both LTC strategies, increased intake pressure reduces emissions of unburned hydrocarbons (UHC) and CO, with corresponding improvements in combustion efficiency and indicated specific fuel consumption (ISFC), particularly at high load. Depending on the operating condition, UHC and CO emissions can stem from either over-lean or over-rich mixtures.
Technical Paper

Comprehensive Characterization of Particulate Emissions from Advanced Diesel Combustion

2007-07-23
2007-01-1945
The applicability of several popular diesel particulate matter (PM) measurement techniques to low temperature combustion is examined. The instruments' performance in measuring low levels of PM from advanced diesel combustion is evaluated. Preliminary emissions optimization of a high-speed light-duty diesel engine was performed for two conventional and two advanced low temperature combustion engine cases. A low PM (<0.2 g/kg_fuel) and NOx (<0.07 g/kg_fuel) advanced low temperature combustion (LTC) condition with high levels of exhaust gas recirculation (EGR) and early injection timing was chosen as a baseline. The three other cases were selected by varying engine load, injection timing, injection pressure, and EGR mass fraction. All engine conditions were run with ultra-low sulfur diesel fuel. An extensive characterization of PM from these engine operating conditions is presented.
Technical Paper

Study on Characteristics of Gasoline Fueled HCCI Using Negative Valve Overlap

2006-11-13
2006-32-0047
Gasoline fueled Homogeneous Charge Compression Ignition (HCCI) combustion with internal exhaust gas re-circulation using Negative Valve Overlap (NOL) was investigated by means of calculation and experiment in order to apply this technology to practical use with sufficient operating range and with acceptable emission and fuel consumption. In this paper we discuss the basic characteristics of NOL-HCCI with emphasis on the influence of intake valve timing on load range, residual gas fraction and induction air flow rate. Emission and fuel consumption under various operation conditions are also discussed. A water-cooled 250cc single cylinder engine with a direct injection system was used for this study. Three sets of valve timing were selected to investigate the effect of intake valve opening duration. Experimental results demonstrated that an engine speed of approximately 2000rpm yields an NMEP (Net Mean Effective Pressure) range from 200kPa to 400kPa.
Technical Paper

Effect of Turbulence on HCCI Combustion

2007-04-16
2007-01-0183
This paper presents large eddy simulation (LES) and experimental studies of the combustion process of ethanol/air mixture in an experimental optical HCCI engine. The fuel is injected to the intake port manifolds to generate uniform fuel/air mixture in the cylinder. Two different piston shapes, one with a flat disc and one with a square bowl, were employed to generate different in-cylinder turbulence and temperature field prior to auto-ignition. The aim of this study was to scrutinize the effect of in-cylinder turbulence on the temperature field and on the combustion process. The fuel tracer, acetone, is measured using laser induced fluorescence (LIF) to characterize the reaction fronts, and chemiluminescence images were recorded using a high speed camera, with a 0.25 crank angle degree resolution, to further illustrate the combustion process. Pressure in the cylinder is recorded in the experiments.
Technical Paper

High-Speed PLIF Imaging for Investigation of Turbulence Effects on Heat Release Rates in HCCI Combustion

2007-04-16
2007-01-0213
High-speed laser diagnostics was utilized for single-cycle resolved studies of the fuel distribution in the combustion chamber of a truck-size HCCI engine. A multi-YAG laser system consisting of four individual Nd:YAG lasers was used for planar laser-induced fluorescence (PLIF) imaging of the fuel distribution. The fundamental beam from the lasers at 1064 nm was frequency quadrupled in order to obtain laser pulses at 266 nm suitable for excitation of acetone that was used as fuel tracer. Bursts of up to eight pulses with very short time separation were produced, allowing PLIF images with high temporal resolution to be captured within one single cycle event. The system was used together with a high-speed framing camera employing eight ICCD modules, with a frame-rate matching the laser pulse repetition rate.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

Investigation into Different DPF Regeneration Strategies Based on Fuel Economy Using Integrated System Simulation

2009-04-20
2009-01-1275
An integrated system model containing sub-models for a multi-cylinder diesel engine, NOx and soot(PM) emissions, diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) has been developed to simulate the engine and aftertreatment systems at transient engine operating conditions. The objective of this work is two-fold; ensure correct implementation of the integrated system level model and apply the integrated model to understand the fuel economy trade-off for various DPF regeneration strategies. The current study focuses on a 1.9L turbocharged diesel engine and its exhaust system. The engine model was built in GT-Power and validated against experimental data at full-load conditions. The DPF model is calibrated for the current engine application by matching the clean DPF pressure drop for different mass flow rates. Load, boost pressure, speed and EGR controllers are tuned and linked with the current engine model.
Technical Paper

Investigation of Transient Emissions and Mixed Mode Combustion for a Light Duty Diesel Engine

2009-04-20
2009-01-1347
The use of low temperature combustion (LTC) modes has demonstrated abilities to lower diesel engine emissions while maintaining good fuel consumption. LTC is assumed to be a viable solution to assist in meeting stringent upcoming diesel engine emissions targets, particularly nitric oxides (NOx) and particulate matter (PM). However, LTC is currently limited to low engine loads and is not a feasible solution at higher loads on production engines. A mixed mode combustion strategy must be implemented to take advantage of the benefits offered from LTC at the low loads and speeds while switching to a conventional diesel combustion strategy at higher loads and speeds and thus allowing full range use of the engine under realistic driving conditions. Experiments were performed to characterize engine out emissions during transient engine operating conditions involving LTC combustion strategies.
Technical Paper

Neutron Imaging of Diesel Particulate Filters

2009-11-02
2009-01-2735
This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500 rpm, 2.6 bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.
Technical Paper

Investigation of the Effects of Cetane Number, Volatility, and Total Aromatic Content on Highly-Dilute Low Temperature Diesel Combustion

2010-04-12
2010-01-0337
The objective of this study is to increase fundamental understanding of the effects of fuel composition and properties on low temperature combustion (LTC) and to identify major properties that could enable engine performance and emission improvements, especially under high load conditions. A series of experiments and computational simulations were conducted under LTC conditions using 67% EGR with 9.5% inlet O₂ concentration on a single-cylinder version of the General Motors Corporation 1.9L direct injection diesel engine. This research investigated the effects of Cetane number (CN), volatility and total aromatic content of diesel fuels on LTC operation. The values of CN, volatility, and total aromatic content studied were selected in a DOE (Design of Experiments) fashion with each variable having a base value as well as a lower and higher level. Timing sweeps were performed for all fuels at a lower load condition of 5.5 bar net IMEP at 2000 rpm using a single-pulse injection strategy.
Technical Paper

Diesel Particulate Oxidation Model: Combined Effects of Volatiles and Fixed Carbon Combustion

2010-10-25
2010-01-2127
Diesel particulate samples were collected from a light duty engine operated at a single speed-load point with a range of biodiesel and conventional fuel blends. The oxidation reactivity of the samples was characterized in a laboratory reactor, and BET surface area measurements were made at several points during oxidation of the fixed carbon component of both types of particulate. The fixed carbon component of biodiesel particulate has a significantly higher surface area for the initial stages of oxidation, but the surface areas for the two particulates become similar as fixed carbon oxidation proceeds beyond 40%. When fixed carbon oxidation rates are normalized to total surface area, it is possible to describe the oxidation rates of the fixed carbon portion of both types of particulates with a single set of Arrhenius parameters. The measured surface area evolution during particle oxidation was found to be inconsistent with shrinking sphere oxidation.
Technical Paper

Laser-Stimulated Ignition in a Homogeneous Charge Compression Ignition Engine

2004-03-08
2004-01-0937
A laser-induced spark was generated inside the combustion chamber of a reciprocating engine running in Homogeneous Charge Compression Ignition (HCCI) mode to investigate the influence of the plasma on combustion performance. For a fuel consisting of 90% natural gas and 10% isooctane, the advance of combustion due to the plasma was found to be strong up to air excess ratios of λ = 2.3 and to cease completely above λ = 2.7. Combustion timing was advanced with increasing advance of plasma timing to a certain extent. The laser was able to sustain HCCI combustion even at much lower inlet temperatures than normally required without plasma. Inlet temperature changes of more than 10 °C could not eliminate laser stimulated HCCI combustion. A potential application of laser stimulated ignition is as a means to actively control HCCI combustion timing.
Technical Paper

Comparison of HCCI Operating Ranges for Combinations of Intake Temperature, Engine Speed and Fuel Composition

2002-06-03
2002-01-1924
A series of engine experiments have been performed to explore the impact intake temperature, engine speed and fuel composition on the HCCI operating range of a CFR engine. The experimental matrix covers a range of engine speeds 600 - 2000 RPM), intake temperatures (300 K - 400 K), and four different fuels. Three of the fuels had different chemical composition but had equivalent research octane numbers of 91.8. The fourth fuel, a blend of primary reference fuels had a research octane number of 70. The acceptable HCCI operating range of the engine was defined through two criteria; the rate of pressure rise needed to be less than 10 MPa per crank angle and the covariance of the indicated mean effective pressure needed to be less than 10 percent. Using these limits the HCCI operating range for the engine was evaluated for the experimental matrix. Data for emissions, and fuel consumption as well as in-cylinder pressure were recorded.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
X