Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Research on Topology Analysis Method of Static Magnetic Network Model of New High Speed Electromagnetic Actuator

2020-04-14
2020-01-0202
In this paper, based on the design of composite magnetic circuit, a new type of high-speed electromagnetic actuator (NHSEMA) with permanent magnetic was invented, which has the characteristics of low power consumption, strong electromagnetic force and high response. Those characteristics were systematically and deeply studied by means of theoretical analysis, numerical simulation and experiment. The magnetic network topology method was proposed to subdivide the structure of the NHSEMA, and construct the static characteristics simulation model of NHSEMA, with taking into account the magnetic flux leakage and edge flux of the system. The accuracy of simulation model of the NHSEMA was verified by set up the test platform. The error is about 3.1%, which proves that the model can achieve both calculation accuracy and speed. The static electromagnetic characteristics, energy conversion and magnetic flux distribution of NHSEMA were studied by using magnetic network topology simulation model.
Technical Paper

Hybrid Powertrain Technology Assessment through an Integrated Simulation Approach

2019-09-09
2019-24-0198
Global automotive fuel economy and emissions pressures mean that 48 V hybridisation will become a significant presence in the passenger car market. The complexity of powertrain solutions is increasing in order to further improve fuel economy for hybrid vehicles and maintain robust emissions performance. However, this results in complex interactions between technologies which are difficult to identify through traditional development approaches, resulting in sub-optimal solutions for either vehicle attributes or cost. The results presented in this paper are from a simulation programme focussed on the optimisation of various advanced powertrain technologies on 48 V hybrid vehicle platforms. The technologies assessed include an electrically heated catalyst, an insulated turbocharger, an electric water pump and a thermal management module.
Technical Paper

A Novel Heating-Coating Hybrid Strategy for Wind Turbine Icing Mitigation

2019-06-10
2019-01-2029
The electro-thermal method is most commonly used for wind turbine anti-/de-icing. The upmost drawback of such systems is the high power consumption. In the present study, we proposed to use a durable slippery liquid-infused porous surface (SLIPS) to effectively reduce the power requirement of the heating element during the anti-/de-icing process. The explorative study was conducted in the Icing Research Tunnel at Iowa State University (ISU-IRT) with a DU91-W2-250 wind turbine blade model exposed under severe icing conditions. During the experiments, while a high-speed imaging system was used to record the dynamic ice accretion process, an infrared (IR) thermal imaging system was also utilized to achieve the simultaneous surface temperature measurements over the test model.
Technical Paper

An Experimental Study to Evaluate Hydro-/Ice-Phobic Coatings for Icing Mitigation over Rotating Aero-engine Fan Blades

2019-06-10
2019-01-1980
Ice accretion on aero-engines, especially on the fan blades, is the very hazardous icing incident due to the potential performance degradation of jet-engines. In the present study, an experimental investigation was conducted to examine the performance of ice-phobic coatings for jet-engine fan icing mitigation. The experimental study was performed in the unique Icing Research Tunnel at Iowa State University (ISU-IRT) with a scaled engine fan model operated under wet glaze and dry rime ice conditions. To evaluate the effects of anti-icing coatings and to acquire the important details of ice accretion and shedding process on fan blade surfaces, a “phase-locked” imaging technique was applied with a high-resolution imaging system. The power input required to drive the engine fan model rotating at a constant prescribed speed was also measured during the ice accretion experiment.
X