Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Parameter Optimization of Anti-Roll Bar Based on Stiffness

2020-04-14
2020-01-0921
The anti-roll bar is an important structural component of the automobile, which can effectively prevent the automobile from rolling and improve the safety of the automobile during steering. In the design of the current anti-roll bar, the stiffness is determined by empirical or oversimplified mathematical models, often not reaching the optimal value. In this paper, eight parameters are used to determine the structure of the anti-roll bar. Combining the Deformation Energy theorem and Castigliano’s theorem, a mathematical model of the stiffness is established. The optimal solution and corresponding parameter values of the mathematical model are obtained by nonlinear programming and genetic algorithm. The influence of structural parameters on the anti-roll bar stiffness is analyzed, and the regular pattern of design is obtained. In addition, the finite element method is used to verify the stiffness solution model.
Technical Paper

Heavy Truck Driveline Components Modeling and Thermal Analyzing

2009-10-06
2009-01-2905
In heavy truck driveline system, the components often include clutch, transmission, transfer case, drive shaft, etc. A fluid torque converter could be equipped in front of the transmission in order to improve the starting performance. Meanwhile, a hydraulic retarder could be introduced for auxiliary braking so as to adapt the truck to the brake on long downgrade in mountainous regions. Thus, the driveline heat load would have a notable increase. Both the fluid torque converter and the hydraulic retarder would produce a large quantity of heat, and a special cooling system is needed for adjusting the transmission fluid temperature with which the gains are potentially very large [1]. The heat load for driveline is often calculated based on empirical formula. For the heavy truck, however, if the heat value is underestimated, driveline components would suffer from overheated damage.
Technical Paper

The Research of the Heavy Truck’s Warming System

2017-10-08
2017-01-2221
It’s not easy to start the engine in winter, especially in frigid highlands, because the low temperature increases the fuel’s viscosity, decreasing the lubricating oil flow ability and the storage performance of battery. Current electrical heating method can improve the engine starting performance in low temperature condition, but this method adds an external power to the engine, leading to the engine cannot maintain an efficient energy utilization. A warming device using the solar energy is designed to conserve the energy during the daytime, and directly warm up the engine at the time when the engine turns off for a long time, especially during the night. A solar collector installed on the top of the vehicle is used to convert the solar energy to the thermal energy, which is then transferred to the heat accumulator that contain the phase-change medium which can increase the heat storage performance.
Technical Paper

Combined Hill Descent Braking Strategy for Heavy Truck in the Featured-Slope

2017-09-17
2017-01-2535
The continuous braking for the brake drum will cause the brake thermal decay when the heavy truck is driving down the long slope in the mountain areas. It reduces the heavy truck’s braking performance and the braking safety. The engine braking and the hydraulic retarder braking both consume the kinetic energy of the heavy truck and can assist the truck driving in the mountain areas. This research proposes a combined hill descent braking strategy for heavy truck based on the recorded information of the slopes to ensure the braking safety of the heavy truck. The vehicle dynamic model and the brake drum temperature rising model are established to analyze the drum’s temperature variation during the downhill progress of the heavy truck. Then based on the slope information, the combined braking temperature variation is analyzed considering the characteristics of the engine braking, the drum braking and the hydraulic retarder braking.
Technical Paper

Driving Fatigue Detection based on Blink Frequency and Eyes Movement

2017-03-28
2017-01-1443
The development of the vehicle quantity and the transportation system accompanies the rise of traffic accidents. Statistics shows that nearly 35-45% traffic accidents are due to drivers’ fatigue. If the driver’s fatigue status could be judged in advance and reminded accurately, the driving safety could be further improved. In this research, the blink frequency and eyes movement information are monitored and the statistical method was used to assess the status of the driving fatigue. The main tasks include locating the edge of the human eyes, obtaining the distance between the upper and lower eyelids for calculating the frequency of the driver's blink. The velocity and position of eyes movement are calculated by detecting the pupils’ movement. The normal eyes movement model is established and the corresponding database is updated constantly by monitoring the driver blink frequency and eyes movement during a certain period of time.
Technical Paper

Vehicle Feature Recognition Method Based on Image Semantic Segmentation

2022-03-29
2022-01-0144
In the process of truck overload and over-limit detection, it is necessary to detect the characteristics of the vehicle's size, type, and wheel number. In addition, in some vehicle vision-based load recognition systems, the vehicle load can be calculated by detecting the vibration frequency of specific parts of the vehicle or the change in the length of the suspension during the vehicle's forward process. Therefore, it is essential to quickly and accurately identify vehicle features through the camera. This paper proposes a vehicle feature recognition method based on image semantic segmentation and Python, which can identify the length, height, number of wheels and vibration frequency at specific parts of the vehicle based on the vehicle driving video captured by the roadside camera.
Technical Paper

Research on Brake Pad Particle Emissions and Temperature Reduction of a Brake Disc in Air Controlling System

2022-03-29
2022-01-0330
This paper addresses the brake pad particle emission during the braking process of a vehicle in motion. The frictional-constant contact between the disc brake and pads results in an increased temperature and wear of the pads. The emission of brake pad particles into the atmosphere leads to an increase in air pollution and hence becomes hazardous to the human body. In this paper, a wheel brake disc is installed in a ventilation system where the specific air flow is introduced in order to investigate the thermal performance and the emission of particles from the brake pads. A mathematical model using the fundamental parameters of the brake disc and ventilation system is established. The behavior of the heat transfer is studied using computational fluid dynamics (CFD). The particle emission rate from the pads is calculated under the assumption of uniform constant pressure distribution at the contact surface of the brake disc and pad.
Technical Paper

Safety Speed Warning System for Tank Truck against Rollover

2021-04-06
2021-01-0978
The tank truck has a wide range of application. When the liquid in the tank is not fully loaded, the lateral movement of the liquid in the tank will shift the center of gravity of the tank truck and make the vehicle less safe. It is easy to roll over when the tank truck is turning. This study combines the vehicle dynamic characteristics and geographic information, which gives the driver safe speed and safe braking distance tips before turning, to reduce the traffic accidents caused by driver's misjudgment. The dynamic model of the tank truck is established, through collecting the real-time information of the vehicle, the vehicle load and braking torque are calculated by the relevant dynamic model. The system needs to measure the deviation of the center of gravity in the tank truck movement process, and the deviation of the center of gravity has a great influence on the safety speed.
Technical Paper

Design and Simulation of Active Anti-Rollover Control System for Heavy Trucks

2022-03-29
2022-01-0909
With the rapid development of the logistics and transportation industry, heavy-duty trucks play an increasingly important role in social life. However, due to the characteristics of large cargo loads, high center of mass and relatively narrow wheelbase, the driving stability of heavy trucks are poor, and it is easy to cause rollover accidents under high-speed driving conditions, large angle steering and emergency obstacle avoidance. To improve the roll stability of heavy trucks, it is necessary to design an active anti-rollover control system, through the analysis of the yaw rate and the load transfer rate of the vehicle, driving states can be estimated during the driving process. Under the intervention of the control system, the lateral transfer rate of heavy trucks can be reduced to correct the driving posture of the vehicle body and reduce the possibility of rollover accidents.
Technical Paper

Research on Overload Dynamic Identification Based on Vehicle Vertical Characteristics

2023-04-11
2023-01-0773
With the development of highway transportation and automobile industry technology, highway truck overload phenomenon occurs frequently, which poses a danger to road safety and personnel life safety. So it is very important to identify the overload phenomenon. Traditionally, static detection is adopted for overload identification, which has low efficiency. Aiming at this phenomenon, a dynamic overload identification method is proposed. Firstly, the coupled road excitation model of vehicle speed and speed bump is established, and then the 4-DOF vehicle model of half car is established. At the same time, considering that the double input vibration of the front and rear wheels will be coupled when vehicle passes through the speed bump, the model is decoupled. Then, the vertical trajectory of the body in the front axle position is obtained by Carsim software simulation.
Technical Paper

A Study on Safety Intelligent Driving System for Heavy Truck Downhill in Mountainous Area

2018-10-05
2018-01-1887
Mountainous area makes up more than half of the whole land area of China, the road of which is full of ups and downs. Heavy commercial vehicles as the main means of transport in mountainous areas, braking torque recession, even brake failure, often happens because of the overheating in long downhill journey, which seriously threatens the safety of the driving. Therefore, this paper presents an intelligent assistance system based on Geographic Information System and vehicle dynamics. The main brake duration and heat generation can be effectively reduced through adjusting the speed at the slope top, applying the engine auxiliary brake in the initial stage and choosing braking strategy appropriately, in order to prolong the downhill driving distance and improve the safety during continuous braking. This paper characterizes and analyses the road gradients and their effects on braking heat generation.
Technical Paper

Cold-end Temperature Control Method for the Engine Exhaust Heat Thermoelectric Module

2014-09-30
2014-01-2343
To make full use of engine exhaust heat and further improve the utilization of the energy efficiency of the heavy truck, thermoelectric module is used to contribute to thermoelectric power generation. The hot-end temperature of the module varies with the engine operating condition because it is connected with the exhaust pipe. The cold-end of the thermoelectric module is mainly cooled by engine cooling system. Increasing the temperature difference between the hot-end and cold-end of the thermoelectric module is a good way to improve the thermoelectric conversion efficiency. For the poor controllability of the hot-end temperature of the thermoelectric module, this study puts forward by lowering the cold-end temperature of the thermoelectric module so as to ensure the improvement of the thermoelectric conversion efficiency. The cooling circle for the cold-end of the thermoelectric module which is independent of the engine cooling system is built.
Technical Paper

The Finite Element Analysis and Optimization on a Special Vehicle

2015-04-14
2015-01-0473
According to the resonant pavement crusher's work principle, its front frame mounted with the resonance system must meet the needs of the structural requirements. To satisfy the strength and stiffness requirement and avoid the resonance, the natural frequency of the front frame should be designed away from the crusher's working frequency. In this paper, the author builds a finite element model of the front frame and analyses its modal. According to the modal analysis results, the fourth modal frequency is close to the working frequency of the crusher. So the front frame should be optimized. In the finite element model, the front frame has been divided into a number of components of shell elements. Through optimal Latin hypercube experimental design, the author analyses the different component thickness's relationship of the frequencies of the front frame. The components with higher correlation coefficient have been chosen as the variables of optimization.
Technical Paper

Research on Parallel Regenerative Braking Control of the Electric Commercial Vehicle Based on Fuzzy Logic

2021-04-06
2021-01-0119
Regenerative braking is an effective technology to extend the driving range of electrified vehicles by recovering kinetic energy from braking. This paper focuses on the design of the regenerative braking control strategy for a commercial vehicle which requires significantly larger braking power than passenger cars. To maximize the energy recovery while ensuring the braking efficiency of the vehicle and its braking safety, this paper proposed a fuzzy logic strategy for regenerative braking control, and a feasibility study was conducted for an electric van. The work includes in three steps. Firstly, state variables that significantly affect regenerative braking performance, i.e., vehicle speed, battery State-of-Charge (SOC), and braking intensity, are identified based on mathematical modelling of the vehicle system dynamics in braking maneuver.
Technical Paper

Downhill Safety Assistant Driving System for Battery Electric Vehicles on Mountain Roads

2019-09-15
2019-01-2129
When driving in mountainous areas, vehicles often encounter downhill conditions. To ensure safe driving, it is necessary to control the speed of vehicles. For internal combustion engine vehicles, auxiliary brake such as engine brake can be used to alleviate the thermal load caused by the continuous braking of the friction brake. For battery electric vehicles (BEVs), regenerative braking can be used as auxiliary braking to improve brake safety. And through regenerative braking, energy can be partly converted into electrical energy and stored in accumulators (such as power batteries and supercapacitors), thus extending the mileage. However, the driver's line of sight in the mountains is limited, resulting in a certain degree of blindness in driving, so it is impossible to fully guarantee the safety and energy saving of downhill driving.
Technical Paper

A Pre-Warning Method for Cornering Speed of Concrete Mixer Truck

2020-04-14
2020-01-1003
The high gravity center of the concrete mixer truck reduces the truck’s stability while steering. The rolling stirring tank makes the stability even worse than the regular engineering vehicle due to the dynamic variation of the centroid position. Most of the researches on the rollover stability of concrete mixer trucks focus on the rollover model establishment and dynamic simulation module. The change of concrete centroid is ignored when the safety cornering speed is calculated. This paper proposes a pre-warning method for the cornering speed of concrete mixer trucks based on centroid dynamic simulation. In the method, the mixing tank stirring model and the vehicle driving dynamic model are established on the Fluent and TruckSim simulation platforms, respectively. The theoretical speed threshold obtained by simulation is used as the evaluation index of the warning speed in the curve. Firstly, the dynamic simulation of the stirring tank model is carried out by Fluent.
X