Refine Your Search

Topic

Search Results

Journal Article

On the Accuracy of Dissipation Scale Measurements in IC Engines

2014-04-01
2014-01-1175
The effects of imaging system resolution and laser sheet thickness on the measurement of the Batchelor scale were investigated in a single-cylinder optical engine. The Batchelor scale was determined by fitting a model spectrum to the dissipation spectrum that was obtained from fuel tracer planar laser-induced fluorescence (PLIF) images of the in-cylinder scalar field. The imaging system resolution was quantified by measuring the step-response function; the scanning knife edge technique was used to measure the 10-90% clip width of the laser sheet. In these experiments, the spatial resolution varied from a native resolution of 32.0 μm to 137.4 μm, and the laser sheet thickness ranged from 108 μm to 707 μm. Thus, the overall resolution of the imaging system was made to vary by approximately a factor of four in the in-plane dimension and a factor of six in the out-of-plane dimension.
Journal Article

A Linear Parameter Varying Combined with Divide-and-Conquer Approach to Thermal System Modeling of Battery Modules

2016-05-01
2015-01-9148
A linear parameter varying (LPV) reduced order model (ROM) is used to approximate the volume-averaged temperature of battery cells in one of the modules of the battery pack with varying mass flow rate of cooling fluid using uniform heat source as inputs. The ROM runs orders of magnitude faster than the original CFD model. To reduce the time it takes to generate training data, used in building LPV ROM, a divide-and-conquer approach is introduced. This is done by dividing the battery module into a series of mid-cell and end-cell units. A mid-cell unit is composed of a cooling channel sandwiched in between two half -cells. A half-cell has half as much heat capacity as a full-cell. An end-cell unit is composed of a cooling channel sandwiched in between full-cell and a half-cell. A mass flow rate distribution look-up-table is generated from a set of steady-state simulations obtained by running the full CFD model at different inlet manifold mass flow rate samples.
Technical Paper

Comparison of Computed Spray in a Direct-Injection Spark-Ignited Engine with Planar Images

1997-10-01
972883
Fuel spray atomization and breakup processes within a direct-injection spark-ignition (DISI) engine and outside the engine were modeled using a modified KIVA-3V code with improved spray models. The structures of the predicted sprays were qualitatively compared with planar images. The considered sprays were created by a prototype pressure-swirl injector and the planar images were obtained by laser sheet imaging in an optical DISI engine. In the out-of-engine case, the spray was injected into atmospheric air, and was modeled in a two dimensional bomb. In the engine case, the injection started from 270° ATDC, and full 3-D computations in the same engine were performed. In both cases, two liquid injection pressure conditions were applied, that is, 3.40 MPa and 6.12 MPa. The model gives good prediction of the tip penetration, and external spray shape, but the internal structure prediction has relatively lower accuracy, especially near the spray axis.
Technical Paper

Improving Upon Best Available Technology: A Clean Flex Fuel Snowmobile

2008-09-09
2008-32-0049
The University of Wisconsin-Madison Snowmobile Team has designed and constructed a clean, quiet, high performance snowmobile for entry in the 2008 Society of Automotive Engineers' Clean Snowmobile Challenge. Built on a 2003 cross-country touring chassis, this machine features a 750 cc fuel-injected four-stroke engine equipped with a fuel sensor which allows operation ranging from regular gasoline to an 85% blend of ethanol and gasoline (E85). The engine has been customized with a Mototron control system which allows for full engine optimization using a range of fuels from E00 to E85. Utilizing a heated oxygen sensor and a 3-way catalyst customized for this engine by W.C. Heraeus-GmbH, this sled reduces NOx, HC and CO emissions by up to 89% to an average specific mass of 0.484, 0.154, 4.94 g/kW-hr respectively. Finally, the Mototron system also allowed Wisconsin to extract another 4 kW from the Weber 750cc engine; producing 45 kW and 65 Nm of torque.
Technical Paper

A State Space Thermal Model for HEV/EV Battery Modeling

2011-04-12
2011-01-1364
Battery thermal management for high power applications such as electrical/hybrid vehicles is crucial. Modeling is an indispensable tool to help engineers design better battery cooling systems. While Computational Fluid Dynamics (CFD) has been used quite successfully for battery thermal management, CFD models can be too large and too slow for repeated transient thermal analysis especially for a battery module or pack. An accurate but much smaller battery thermal model using a state space representation is proposed. The parameters in the state space model are extracted from CFD results. The state space model is then shown to provide identical results as those from CFD under transient power inputs. While a CFD model may take hours to run depending on the size of the problem, the corresponding state space model runs in seconds.
Technical Paper

Simulating Rechargeable Lithium-Ion Battery Using VHDL-AMS

2012-04-16
2012-01-0665
A commonly used physics based electrochemisty model for a lithium-ion battery cell was first proposed by professor Newman in 1993. The model consists of a tightly coupled set of partial differential equations. Due to the tight coupling between the equations and the 2d implementation due to the particle modeling, and thus called pseudo-2d in literature, numerically obtaining a solution turns out to be challenging even for a lot of commercial softwares. In this paper, the VHDL-AMS language is used to solve the set of equations. VHDL-AMS allows the user to focus on the physical modeling rather than numerically solving the governing equations. In using VHDL-AMS, the user only needs to specify the governing equations after spatial discretization. A simulation environment, which supports VHDL-AMS, can then be used to solve the governing equations and also provides both pre- and post- processing tools.
Technical Paper

A Multi-disciplinary and Multi-scale Simulation-Based Approach for the Design of Control Systems

2013-09-17
2013-01-2212
This paper introduces a model-based systems and embedded software engineering, workflow for the design of control systems. The interdisciplinary approach that is presented relies on an integrated set of tools that addresses the needs of various engineering groups, including system architecture, design, and validation. For each of these groups, a set of best practices has been established and targeted tools are proposed and integrated in a unique platform, thus allowing efficient communication between the various groups. In the initial stages of system design, including functional and architectural design, a SysML-based approach is proposed. This solution is the basis to develop systems that have to obey both functional and certification standards such as ARINC 653 (IMA) and ARP 4754A. Detailed system design typically requires modeling and simulation of each individual physical component of the system by various engineering groups (mechanical, electrical, etc.).
Technical Paper

Guidelines for CFD Simulations of Ground Vehicle Aerodynamics

2006-10-31
2006-01-3544
The CFD tools in aerodynamic design process have been commonly used in aerospace industry in last three decades. Although there are many CFD software algorithms developed for aerodynamic applications, the nature of a complex, three-dimensional geometry in incompressible highly separated, viscous flow made computational simulation of ground vehicle aerodynamics more difficult than aerospace applications. However, recent developments in computational hardware and software industry enabled many new engineering applications on computational environment. Traditional production process has largely influenced by computational design, analysis, manufacturing and visualization. Different aspects of linking advanced computational tools and aerodynamic vehicle design challenges are discussed in the present work. Key technologies like parallel computation, turbulence modeling and CFD/wind tunnel compatibility issues are presented.
Technical Paper

Efficiency and Emissions Mapping of RCCI in a Light-Duty Diesel Engine

2013-04-08
2013-01-0289
In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOX and particulate matter (PM) emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. Varying the premixed gasoline fraction changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This added control over the combustion process has been shown to allow rapid engine operating point exploration without direct modeling guidance.
Technical Paper

Implementing Simulation Driven Product Development for Thermoforming of an Instrument Panel

2013-04-08
2013-01-0642
In this case study, the thermoforming of an automotive instrument panel is considered. The effect of different oven settings on the final material distribution is studied using structural FEA simulation. The variable thickness distribution of the thermoformed part is mapped onto a structural model using a new simple mapping algorithm, and a structural FEA simulation is carried out to examine the final warpage of the instrument panel. The simulation predicts that the minimum thickness of the formed part can be increased by 10% by optimizing the oven settings. Although the optimized process uses oven settings that are less uniform than the baseline settings, the model indicates that warpage experienced by the optimized part will be less than that of the baseline case.
Technical Paper

Mass Burning Rate in a Rotary Combustion Engine

1974-02-01
741089
This paper reports the mass-burning rate in a rotary combustion engine. The mass-burning rate is calculated through an iterative constituent and energy constraints during the combustion process. First approximation is obtained through the firing and motoring-pressure trace as recorded by an image-retaining oscilloscope and recorded subsequently by a polaroid camera. Effect of engine load, engine speed, relative (A/F) on the mass-burning rate and maximum heat release rate were studied. Three different type of fuels were used in the experimental test runs.
Technical Paper

Portable Power from Nonportable Energy Sources

1963-01-01
630470
To meet future world energy demands, the engineer’s task will be to develop, through research, means of supplying new sources of energy. Though nuclear processes and solar energy will provide future energy, they are not readily adaptable to portable power systems due to inherent shortcomings. Energy can be supplied to portable power systems by energy storage systems using chemical, mechanical, or electrical forms, or it may be supplied through energy-in-transit systems. Technical discussion of various systems is presented. To develop suitable energy storage systems, thought must be given to problems of construction, operation, maintenance, and economics. Research is necessary to determine which chemical fuels are most adaptable for internal combustion engines.
Technical Paper

A Tape Recording and Computer Processing System for Instantaneous Engine Data

1968-02-01
680133
The development of a high speed, multichannel data acquisition system is described. A precision magnetic tape recorder is used to record analog data from highly transient phenomena. Analog-to-digital data conversion is performed on a hybrid computer and the digitized data is processed using large, high speed digital computers. A detailed example of the application of the system to the measurement of rates-of-injection, rates-of-heat release, and instantaneous rates-of-heat transfer from the cylinder gases to the cylinder walls in a high speed open-chamber diesel engine is presented.
Technical Paper

Design and Optimization of a P4 mHEV Powertrain

2022-03-29
2022-01-0669
The EcoCAR Mobility Challenge (EMC) is the latest edition of the Advanced Vehicle Technology Competition (AVTC) series sponsored by the US Department of Energy. This competition challenges 11 North American universities to redesign a stock 2019 Chevrolet Blazer into an energy-efficient, SAE level 2-autonomous mild hybrid electric vehicle (mHEV) for use in the Mobility as a Service (MaaS) market. The Mississippi State University (MSU) team designed a P4 electric powertrain with an 85kW (113.99 HP) permanent magnet synchronous machine (PMSM) powered by a custom 5.4 kWh lithium-ion energy storage system. To maximize energy efficiency, Model Based Design concepts were leveraged to optimize the overall gear ratio for the P4 system. To accommodate this optimized ratio in the stock vehicle, a custom offset gearbox was designed that links the PMSM to the rear drive module.
Technical Paper

Limitations of Sector Mesh Geometry and Initial Conditions to Model Flow and Mixture Formation in Direct-Injection Diesel Engines

2019-04-02
2019-01-0204
Sector mesh modeling is the dominant computational approach for combustion system design optimization. The aim of this work is to quantify the errors descending from the sector mesh approach through three geometric modeling approaches to an optical diesel engine. A full engine geometry mesh is created, including valves and intake and exhaust ports and runners, and a full-cycle flow simulation is performed until fired TDC. Next, an axisymmetric sector cylinder mesh is initialized with homogeneous bulk in-cylinder initial conditions initialized from the full-cycle simulation. Finally, a 360-degree azimuthal mesh of the cylinder is initialized with flow and thermodynamics fields at IVC mapped from the full engine geometry using a conservative interpolation approach. A study of the in-cylinder flow features until TDC showed that the geometric features on the cylinder head (valve tilt and protrusion into the combustion chamber, valve recesses) have a large impact on flow complexity.
Technical Paper

A Visual Investigation of CFD-Predicted In-Cylinder Mechanisms That Control First- and Second-Stage Ignition in Diesel Jets

2019-04-02
2019-01-0543
The long-term goal of this work is to develop a conceptual model for multiple injections of diesel jets. The current work contributes to that effort by performing a detailed modeling investigation into mechanisms that are predicted to control 1st and 2nd stage ignition in single-pulse diesel (n-dodecane) jets under different conditions. One condition produces a jet with negative ignition dwell that is dominated by mixing-controlled heat release, and the other, a jet with positive ignition dwell and dominated by premixed heat release. During 1st stage ignition, fuel is predicted to burn similarly under both conditions; far upstream, gases at the radial-edge of the jet, where gas temperatures are hotter, partially react and reactions continue as gases flow downstream. Once beyond the point of complete fuel evaporation, near-axis gases are no longer cooled by the evaporation process and 1st stage ignition transitions to 2nd stage ignition.
Technical Paper

Highway Fuel Economy Testing of an RCCI Series Hybrid Vehicle

2015-04-14
2015-01-0837
In the current work, a series-hybrid vehicle has been constructed that utilizes a dual-fuel, Reactivity Controlled Compression Ignition (RCCI) engine. The vehicle is a 2009 Saturn Vue chassis and a 1.9L turbo-diesel engine converted to operate with low temperature RCCI combustion. The engine is coupled to a 90 kW AC motor, acting as an electrical generator to charge a 14.1 kW-hr lithium-ion traction battery pack, which powers the rear wheels by a 75 kW drive motor. Full vehicle testing was conducted on chassis dynamometers at the Vehicle Emissions Research Laboratory at Ford Motor Company and at the Vehicle Research Laboratory at Oak Ridge National Laboratory. For this work, the US Environmental Protection Agency Highway Fuel Economy Test was performed using commercially available gasoline and ultra-low sulfur diesel. Fuel economy and emissions data were recorded over the specified test cycle and calculated based on the fuel properties and the high-voltage battery energy usage.
Technical Paper

A Complete Li-Ion Battery Simulation Model

2014-04-01
2014-01-1842
Due to growing interest in hybrid and electric vehicles, li-ion battery modeling is receiving a lot of attention from designers and researchers. This paper presents a complete model for a li-ion battery pack. It starts from the Newman electrochemistry model to create the battery performance curves. Such information is then used for cell level battery equivalent circuit model (ECM) parameter identification. 28 cell ECMs are connected to create the module ECM. Four module ECMs are connected through a busbar model to create the pack ECM. The busbar model is a reduced order model (ROM) extracted from electromagnetic finite element analysis (FEA) results, taking into account the parasitic effects. Battery thermal performance is simulated first by computational fluid dynamics (CFD). Then, a thermal linear and time-invariant (LTI) ROM is created out of CFD solution. The thermal LTI ROM is then two-way coupled with the battery pack ECM to form a complete battery pack model.
Technical Paper

Design Optimization of Vehicle Muffler Transmission Loss using Hybrid Method

2015-06-15
2015-01-2306
This study presents an efficient process to optimize the transmission loss of a vehicle muffler by using both experimental and analytical methods. Two production mufflers were selected for this study. Both mufflers have complex partitions and one of them was filled with absorbent fiberglass. CAD files of the mufflers were established for developing FEA models in ANSYS and another commercial software program (CFEA). FEA models were validated by experimental measurements using a two-source method. After the models were verified, sensitivity studies of design parameters were performed to optimize the transmission loss (TL) of both mufflers. The sensitivity study includes the perforated hole variations, partition variations and absorbent material insertion. The experimental and sensitivity analysis results are included in the paper.
Technical Paper

The Detection of Visual Distraction using Vehicle and Driver-Based Sensors

2016-04-05
2016-01-0114
Distracted driving remains a serious risk to motorists in the US and worldwide. Over 3,000 people were killed in 2013 in the US because of distracted driving; and over 420,000 people were injured. A system that can accurately detect distracted driving would potentially be able to alert drivers, bringing their attention back to the primary driving task and potentially saving lives. This paper documents an effort to develop an algorithm that can detect visual distraction using vehicle-based sensor signals such as steering wheel inputs and lane position. Additionally, the vehicle-based algorithm is compared with a version that includes driving-based signals in the form of head tracking data. The algorithms were developed using machine learning techniques and combine a Random Forest model for instantaneous detection with a Hidden Markov model for time series predictions.
X