Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Reinforced Light Metals for Automotive Applications

2007-04-16
2007-01-1228
Efficiency and dynamic behavior of a vehicle are strongly affected by its weight. Taking into consideration comfort, safety and emissions in modern automobiles, lightweight design is more of a challenge than ever in automotive engineering. Materials development plays an important role against this background, since significant weight decrease is made possible through the substitution of high density materials and more precise adjustment of material parameters to the functional requirements of components. Reinforced light metals, therefore, offer a promising approach due to their high strength to weight ratio. The paper gives an overview on matrix and reinforcement structures suited for the high volume output of the automotive industry. Further analytical and numerical approaches to describe the strengthening effects and the good mechanical characteristics of these composite materials are presented.
Technical Paper

Collaborative Product Creation Driving the MOST Cooperation

2002-10-21
2002-21-0003
The following document offers insight into the work of the MOST Cooperation. Now that MOST is on the road, a short overview of five years of successful collaborative work of the partners involved and the results achieved will be given. Emphasis is put on the importance of a shared vision in combination with shared values as a prerequisite for targeted collaborative work. It is also about additional key success factors that led to the success of the MOST Cooperation. Your attention will be directed to the way the MOST Cooperation sets and achieves its goals. And you will learn about how the organization was set-up to support a fast progression towards the common goal. The document concludes with examples of recent work as well as an outlook on future work.
Technical Paper

Implementation of a Complexity Optimized Product Design Methodology

2003-03-03
2003-01-1013
The paper describes the integration of Complexity Management into the design cycle of an Automobile Manufacturer. It explains the reasons why most Automobile Manufacturers lack effective processes of dealing with complexity issues and introduces a holistic methodology for systematic and successful avoidance and control of unnecessary complexity. The paper provides an overview on the methods and tools necessary for the successful application of the above principle and is based on the experiences made with the implementation of the concept into the Audi AG product development process.
Technical Paper

A Combined Computational-Experimental Approach for Modelling of Coupled Vibro-Acoustic Problems

2013-05-13
2013-01-1997
Over the past 30 years, the computer-aided engineering (CAE) tools have been applied extensively in the automotive industry. In order to accelerate time-to-market while coping with legal limits that have become increasingly restrictive over the last decades, CAE has become an indispensable tool covering all major fields in a modern automotive product design process. However, when tackling complex real-life engineering problems, the computational models might become rather involved and thus less efficient. Therefore, the overall trend in the automotive industry is currently heading towards combined approaches, which allow the best of the both worlds, namely the experimental measurement and numerical simulation, to be merged into one integrated scheme. In this paper, the so-called patch transfer function (PTF) approach is adopted to solve coupled vibro-acoustic problems. In the PTF scheme, the interfaces between fluid and structure are discretised in terms of patches.
Technical Paper

Nanomaterials - A New Dimension in Automotive Engineering

2006-04-03
2006-01-0105
Modern automotive engineering is more than ever affected by a multitude of different and sometimes contradictory requirements. Innovative materials play an increasingly important role in ensuring the fulfillment of these requirements. Conventional material development has always met these demands to a high standard. However, there will be challenges where nanotechnology will provide us with even more intelligent solutions. Consequently, automotive engineering makes more and more use of the large variety of new technological functionalities and innovative applications offered by nanotechnology. Nanotechnology involves property changes that only occur at the nanoscale. Some selected properties are suitable to be used in the design of tailored materials called nanomaterials, opening up a new dimension in automotive engineering. Nanomaterials promise valuable progress through new functionalities, in particular safety and quality rating applications or lightweight construction.
Technical Paper

Optimization of Trim Component and Reduction of the Road Noise Transmission Based on Finite Element Methods

2018-06-13
2018-01-1547
The acoustic trim components play an essential role in NVH behavior by reducing both the structure borne and airborne noise transmission while participating to the absorption inside the car. Over the past years, the interest for numerical solutions to predict the noise transmission through trim packages has grown, leading to the development of dedicated CAE tools. The incrementally restrictive weight and space constraints force today CAE engineers to seek for optimized trim package solution. This paper presents a two-steps process which aims to reduce the structure borne road noise due to floor panel using a coupled simulation with MSC NASTRAN and Actran. The embossment of the supporting steel structure, the material properties of porous layers and the thickness of visco-elastic patches are the design variables of the optimization process.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

BMW's Magnesium-Aluminium Composite Crankcase, State-of-the-Art Light Metal Casting and Manufacturing

2006-04-03
2006-01-0069
This paper presents new aspects of the casting and manufacturing of BMWs inline six-cylinder engine. This new spark-ignition engine is the realization of the BMW concept of efficient dynamics at high technological level. For the first time in the history of modern engine design, a water-cooled crankcase is manufactured by magnesium casting for mass production. This extraordinary combination of magnesium and aluminium is a milestone in engine construction and took place at the light-metal foundry at BMW's Landshut plant. This paper gives a close summary about process development, the constructive structure, and the manufacturing and testing processes.
X