Refine Your Search

Topic

Search Results

Journal Article

Isolating the Effects of EGR on HCCI Heat-Release Rates and NOX Emissions

2009-11-02
2009-01-2665
High-load HCCI operation is typically limited by rapid pressure-rise rates (PRR) and engine knock caused by an overly rapid heat-release rate (HRR). Exhaust gas recirculation (EGR) is commonly used in HCCI engines, and it is often stated in the literature that charge dilution with EGR (or high levels of retained residuals) is beneficial for reducing the PRR to allow higher loads without knock. However, EGR/retained-residuals affect other operating parameters such as combustion phasing, which can in turn influence the PRR independently from any effect of the EGR gases themselves. Because of the multiple effects of EGR, its direct benefit for reducing the PRR is not well understood. In this work, the effects of EGR on the PRR were isolated by controlling the combustion phasing independently from the EGR addition by adjusting the intake temperature. The experiments were conducted using gasoline as the fuel at a 1200 rpm operating condition.
Journal Article

Ethanol Autoignition Characteristics and HCCI Performance for Wide Ranges of Engine Speed, Load and Boost

2010-04-12
2010-01-0338
The characteristics of ethanol autoignition and the associated HCCI performance are examined in this work. The experiments were conducted over wide ranges of engine speed, load and intake boost pressure (Piⁿ) in a single-cylinder HCCI research engine (0.98 liters) with a CR = 14 piston. The data show that pure ethanol is a true single-stage ignition fuel. It does not exhibit low-temperature heat release (LTHR), not even for boosted operation. This makes ethanol uniquely different from conventional distillate fuels and offers several benefits: a) The intake temperature (Tiⁿ) does not have to be adjusted much with changes of engine speed, load and intake boost pressure. b) High Piⁿ can be tolerated without running out of control authority because of an excessively low Tiⁿ requirement. However, by maintaining true single-stage ignition characteristics, ethanol also shows a relatively low temperature-rise rate just prior to its hot ignition point.
Journal Article

Combined Effects of Multi-Pulse Transient Plasma Ignition and Intake Heating on Lean Limits of Well-Mixed E85 DISI Engine Operation

2014-10-13
2014-01-2615
Well-mixed lean SI engine operation can provide improvements of the fuel economy relative to that of traditional well-mixed stoichiometric SI operation. This work examines the use of two methods for improving the stability of lean operation, namely multi-pulse transient plasma ignition and intake air preheating. These two methods are compared to standard SI operation using a conventional high-energy inductive ignition system without intake air preheating. E85 is the fuel chosen for this study. The multi-pulse transient plasma ignition system utilizes custom electronics to generate 10 kHz bursts of 10 ultra-short (12ns), high-amplitude pulses (200 A). These pulses were applied to a custom spark plug with a semi-open ignition cavity. High-speed imaging reveals that ignition in this cavity generates a turbulent jet-like early flame spread that speeds up the transition from ignition to the main combustion event.
Journal Article

Significance of RON, MON, and LTHR for Knock Limits of Compositionally Dissimilar Gasoline Fuels in a DISI Engine

2017-03-28
2017-01-0662
Spark-ignition (SI) engine efficiency is typically limited by fuel auto-ignition resistance, which is described in practice by the Research Octane Number (RON) and the Motor Octane Number (MON). The goal of this work is to assess whether fuel properties (i.e. RON, MON, and heat of vaporization) are sufficient to describe the antiknock behavior of varying gasoline formulations in modern engines. To this end, the auto-ignition resistance of three compositionally dissimilar gasoline-like fuels with identical RON values and varying or non-varying MON values were evaluated in a modern, prototype, 12:1 compression ratio, high-swirl (by nature of intake valve deactivation), directly injected spark ignition (DISI) engine at 1400 RPM. The three gasolines are an alkylate blend (RON=98, MON=97), a blend with high aromatic content (RON=98, MON=88), and a blend of 30% ethanol by volume with a gasoline BOB (RON=98, MON=87; see Table 2 for details).
Journal Article

Combined Effects of Fuel and Dilution Type on Efficiency Gains of Lean Well-Mixed DISI Engine Operation with Enhanced Ignition and Intake Heating for Enabling Mixed-Mode Combustion

2016-04-05
2016-01-0689
Well-mixed lean or dilute SI engine operation can provide efficiency improvements relative to that of traditional well-mixed stoichiometric SI operation. However, the realized gains depend on the ability to ensure stable, complete and fast combustion. In this work, the influence of fuel type is examined for gasoline, E30 and E85. Several enabling techniques are compared. For enhanced ignition stability, a multi-pulse (MP) transient plasma ignition system is compared to a conventional high-energy inductive spark ignition system. Combined effects of fuel type and intake-gas preheating are examined. Also, the effects of dilution type (air or N2-simulated EGR) on lean efficiency gains and stability limits are clarified. The largest efficiency improvement is found for lean gasoline operation using intake preheating, showing the equivalent of a 20% fuel-economy gain relative to traditional non-dilute stoichiometric operation.
Journal Article

Detailed HCCI Exhaust Speciation and the Sources of Hydrocarbon and Oxygenated Hydrocarbon Emissions

2008-04-14
2008-01-0053
Detailed exhaust speciation measurements were made on an HCCI engine fueled with iso-octane over a range of fueling rates, and over a range of fuel-stratification levels. Fully premixed fueling was used for the fueling sweep. This sweep extended from a fuel/air equivalence ratio (ϕ) of 0.28, which is sufficiently high to achieve a combustion efficiency of 96%, down to a below-idle fueling rate of ϕ = 0.08, with a combustion efficiency of only 55%. The stratification sweep was conducted at an idle fueling rate, using an 8-hole GDI injector to vary stratification from well-mixed conditions for an early start of injection (SOI) (40°CA) to highly stratified conditions for an SOI well up the compression stroke (325°CA, 35°bTDC-compression). The engine speed was 1200 rpm. At each operating condition, exhaust samples were collected and analyzed by GC-FID for the C1 and C2 hydrocarbon (HC) species and by GC-MS for all other species except formaldehyde and acetaldehyde.
Journal Article

Understanding the Chemical Effects of Increased Boost Pressure under HCCI Conditions

2008-04-14
2008-01-0019
One way to increase the load range in an HCCI engine is to increase boost pressure. In this modeling study, we investigate the effect of increased boost pressure on the fuel chemistry in an HCCI engine. Computed results of HCCI combustion are compared to experimental results in a HCCI engine. We examine the influence of boost pressure using a number of different detailed chemical kinetic models - representing both pure compounds (methylcyclohexane, cyclohexane, iso-octane and n-heptane) and multi-component models (primary reference fuel model and gasoline surrogate fuel model). We examine how the model predictions are altered by increased fueling, as well as reaction rate variation, and the inclusion of residuals in our calculations. In this study, we probe the low temperature chemistry (LTC) region and examine the chemistry responsible for the low-temperature heat release (LTHR) for wide ranges of intake boost pressure.
Journal Article

Influence of EGR Quality and Unmixedness on the High-Load Limits of HCCI Engines

2009-04-20
2009-01-0666
This work explores how the high-load limits of HCCI are affected by fuel autoignition reactivity, EGR quality/composition, and EGR unmixedness for naturally aspirated conditions. This is done for PRF80 and PRF60. The experiments were conducted in a single-cylinder HCCI research engine (0.98 liters) with a CR = 14 piston installed. By operating at successively higher engine loads, five load-limiting factors were identified for these fuels: 1) Residual-NOx-induced run-away advancement of the combustion phasing, 2) EGR-NOx-induced run-away, 3) EGR-NOx/wall-heating induced run-away 4) EGR-induced oxygen deprivation, and 5) excessive partial-burn occurrence due to EGR unmixedness. The actual load-limiting factor is dependent on the autoignition reactivity of the fuel, the EGR quality level (where high quality refers to the absence of trace species like NO, HC and CO, i.e. simulated EGR), the level of EGR unmixedness, and the selected pressure-rise rate (PRR).
Journal Article

Influence of Fuel Autoignition Reactivity on the High-Load Limits of HCCI Engines

2008-04-14
2008-01-0054
This work explores the high-load limits of HCCI for naturally aspirated operation. This is done for three fuels with various autoignition reactivity: iso-octane, PRF80, and PRF60. The experiments were conducted in a single-cylinder HCCI research engine (0.98 liter displacement), mostly with a CR = 14 piston installed, but with some tests at CR = 18. Five load-limiting factors were identified: 1) NOx-induced combustion-phasing run-away, 2) wall-heating-induced run-away, 3) EGR-induced oxygen deprivation, 4) wandering unsteady combustion, and 5) excessive exhaust NOx. These experiments at 1200 rpm show that the actual load-limiting factor is dependent on the autoignition reactivity of the fuel, the selected CA50, and in some cases, the tolerable level of NOx emissions. For iso-octane, which has the highest resistance to autoignition of the fuels tested, the NOx emissions become unacceptable at IMEPg = 473 kPa.
Journal Article

Partial Fuel Stratification to Control HCCI Heat Release Rates: Fuel Composition and Other Factors Affecting Pre-Ignition Reactions of Two-Stage Ignition Fuels

2011-04-12
2011-01-1359
Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock. This study focuses on three factors, engine speed, intake temperature, and fuel composition, that can affect the pre-ignition processes of two-stage fuels and consequently affect their performance with partial fuel stratification. A model fuel consisting of 73 vol.% isooctane and 27 vol.% of n-heptane (PRF73), which was previously compared against neat isooctane to demonstrate the superior performance of two-stage fuels over single-stage fuels with partial fuel stratification, was first used to study the effects of engine speed and intake temperature.
Journal Article

NOx-Reduction by Injection-Timing Retard in a Stratified-Charge DISI Engine using Gasoline and E85

2012-09-10
2012-01-1643
The lean-burn stratified-charge DISI engine has a strong potential for increased thermal efficiency compared to the traditional throttled SI engine. This experimental study of a spray-guided stratified-charge combustion system compares the engine response to injection-timing retard for gasoline and E85. Focus is on engine-out NO and soot, and combustion stability. The results show that for either fuel, injection-timing retard lowers the engine-out NO emissions. This is partly attributed to a combination of lower peak-combustion temperatures and shorter residence time at high temperatures, largely caused by a more retarded combustion phasing. However, for the current conditions using a single-injection strategy, the potential of NO reduction with gasoline is limited by both elevated soot emissions and the occurrence of misfire cycles. In strong contrast, when E85 fuel is used, the combustion system responds very well to injection-timing retard.
Journal Article

Smoothing HCCI Heat Release with Vaporization-Cooling-Induced Thermal Stratification using Ethanol

2011-08-30
2011-01-1760
Ethanol and ethanol/gasoline blends are being widely considered as alternative fuels for light-duty automotive applications. At the same time, HCCI combustion has the potential to provide high efficiency and ultra-low exhaust emissions. However, the application of HCCI is typically limited to low and moderate loads because of unacceptably high heat-release rates (HRR) at higher fueling rates. This work investigates the potential of lowering the HCCI HRR at high loads by using partial fuel stratification to increase the in-cylinder thermal stratification. This strategy is based on ethanol's high heat of vaporization combined with its true single-stage ignition characteristics. Using partial fuel stratification, the strong fuel-vaporization cooling produces thermal stratification due to variations in the amount of fuel vaporization in different parts of the combustion chamber.
Technical Paper

Fuel Stratification for Low-Load HCCI Combustion: Performance & Fuel-PLIF Measurements

2007-10-29
2007-01-4130
Fuel stratification has been investigated as a means of improving the low-load combustion efficiency in an HCCI engine. Several stratification techniques were examined: different GDI injectors, increased swirl, and changes in injection pressure, to determine which parameters are effective for improving the combustion efficiency while maintaining NOx emissions below U.S. 2010 limits. Performance and emission measurements were obtained in an all-metal engine. Corresponding fuel distribution measurements were made with fuel PLIF imaging in a matching optically accessible engine. The fuel used was iso-octane, which is a good surrogate for gasoline. For an idle fueling rate (ϕ = 0.12), combustion efficiency was improved substantially, from 64% to 89% at the NOx limit, using delayed fuel injection with a hollow-cone injector at an injection pressure of 120 bar.
Technical Paper

EGR and Intake Boost for Managing HCCI Low-Temperature Heat Release over Wide Ranges of Engine Speed

2007-01-23
2007-01-0051
Reaching for higher loads and improving combustion-phasing control are important challenges for HCCI research. Although HCCI engines can operate with a variety of fuels, recent research has shown that fuels with two-stage autoignition have some significant advantages for overcoming these challenges. Because the amount of low-temperature heat release (LTHR) is proportional to the local equivalence ratio (ϕ), fuel stratification can be used to adjust the combustion phasing (CA50) and/or burn duration using various fuel-injection strategies. Two-stage ignition fuels also allow stable combustion even for extensive combustion-phasing retard, which reduces the knocking propensity. Finally, the LTHR reduces the required intake temperature, which increases the inducted charge mass for a given intake pressure, allowing higher fueling rates before knocking and NOx emissions become a problem. However, the amount of LTHR is normally highly dependent on the engine speed.
Technical Paper

Thermodynamic and Chemical Effects of EGR and Its Constituents on HCCI Autoignition

2007-04-16
2007-01-0207
EGR can be used beneficially to control combustion phasing in HCCI engines. To better understand the function of EGR, this study experimentally investigates the thermodynamic and chemical effects of real EGR, simulated EGR, dry EGR, and individual EGR constituents (N2, CO2, and H2O) on the autoignition processes. This was done for gasoline and various PRF blends. The data show that addition of real EGR retards the autoignition timing for all fuels. However, the amount of retard is dependent on the specific fuel type. This can be explained by identifying and quantifying the various underlying mechanisms, which are: 1) Thermodynamic cooling effect due to increased specific-heat capacity, 2) [O2] reduction effect, 3) Enhancement of autoignition due to the presence of H2O, 4) Enhancement or suppression of autoignition due to the presence of trace species such as unburned or partially-oxidized hydrocarbons.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

Isolating the Effects of Fuel Chemistry on Combustion Phasing in an HCCI Engine and the Potential of Fuel Stratification for Ignition Control

2004-03-08
2004-01-0557
An investigation has been conducted to determine the relative magnitude of the various factors that cause changes in combustion phasing (or required intake temperature) with changes in fueling rate in HCCI engines. These factors include: fuel autoignition chemistry and thermodynamic properties (referred to as fuel chemistry), combustion duration, wall temperatures, residuals, and heat/cooling during induction. Based on the insight gained from these results, the potential of fuel stratification to control combustion phasing was also investigated. The experiments were conducted in a single-cylinder HCCI engine at 1200 rpm using a GDI-type fuel injector. Engine operation was altered in a series of steps to suppress each of the factors affecting combustion phasing with changes in fueling rate, leaving only the effect of fuel chemistry.
Technical Paper

Combined Effects of Fuel-Type and Engine Speed on Intake Temperature Requirements and Completeness of Bulk-Gas Reactions for HCCI Combustion

2003-10-27
2003-01-3173
To gain a better understanding of how the onset of incomplete bulk-gas reactions changes with engine speed and fuel-type, a parametric study of HCCI combustion and emissions has been conducted. The experimental part of the study was performed at naturally aspirated conditions and included fueling sweeps at four engine speeds (600, 1200, 1800 and 2400 rpm) for research grade gasoline, pure iso-octane and two mixtures of the primary reference fuels (i.e. n-heptane and iso-octane) with octane numbers of 80 and 60. Additionally, single-zone CHEMKIN computations with a detailed mechanism for iso-octane were conducted. The results show that there is a strong coupling between the ignition quality of the fuel and the required intake temperature to phase the combustion at TDC. There is also a direct influence of intake temperature on the completeness of combustion. This is the case because the CO-to-CO2 reactions are highly sensitive to the peak combustion temperatures.
Technical Paper

The Use of Transient Operation to Evaluate Fuel Effects on Knock Limits Well beyond RON Conditions in Spark-Ignition Engines

2017-10-08
2017-01-2234
Fundamental engine research is primarily conducted under steady-state conditions, in order to better describe boundary conditions which influence the studied phenomena. However, light-duty automobiles are operated, and tested, under heavily transient conditions. This mismatch between studied conditions and in-use conditions is deemed acceptable due to the fundamental knowledge gained from steady-state experiments. Nonetheless, it is useful to characterize the conditions encountered during transient operation and determine if the governing phenomena are unduly influenced by the differences between steady-state and transient operation, and further, whether transient behavior can be reasonably extrapolated from steady-state behavior. The transient operation mode used in this study consists of 20 fired cycles followed by 80 motored cycles, operating on a continuous basis.
Technical Paper

Large-Eddy Simulations of Spray Variability Effects on Flow Variability in a Direct-Injection Spark-Ignition Engine Under Non-Combusting Operating Conditions

2018-04-03
2018-01-0196
Large-eddy Simulations (LES) have been carried out to investigate spray variability and its effect on cycle-to-cycle flow variability in a direct-injection spark-ignition (DISI) engine under non-reacting conditions. Initial simulations were performed of an injector in a constant volume spray chamber to validate the simulation spray set-up. Comparisons showed good agreement in global spray measures such as the penetration. Local mixing data and shot-to-shot variability were also compared using Rayleigh-scattering images and probability contours. The simulations were found to reasonably match the local mixing data and shot-to-shot variability using a random-seed perturbation methodology. After validation, the same spray set-up with only minor changes was used to simulate the same injector in an optically accessible DISI engine. Particle Image Velocimetry (PIV) measurements were used to quantify the flow velocity in a horizontal plane intersecting the spark plug gap.
X