Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Replacing Volumetric Efficiency Calibration Look-up Tables with Artificial Neural Network-based Algorithm for Variable Valve Actuation

2010-04-12
2010-01-0158
Signal processing incorporating Artificial Neural Networks (ANN) has been shown to be well suited for modeling engine-related performance indicators [ 1 , 2 , 3 ] that require multi-dimensional parametric calibration space. However, to obtain acceptable accuracy, traditional ANN implementation may require processing resources beyond the capability of current engine controllers. This paper explores the practicality of implementing an ANN-based algorithm performing real-time calculations of the volumetric efficiency (VE) for an engine with variable valve actuation (phasing and lift variation). This alternative approach was considered attractive since the additional degree of freedom introduced by variable lift would be cumbersome to add to the traditional multi-dimensional table-based representation of VE.
Technical Paper

Numerical Investigation of Mixture Preparation in a GDI Engine

2006-10-16
2006-01-3375
The purpose of the present paper is to develop an engine simulation tool in a commercial CFD code to study the spray and mixing process that can be used to access the performance of a Gasoline Direct Injection (GDI) engine. The ignition, combustion and pollutant formation are strongly dependent on the quality of the fuel-air mixture. The fuel is injected directly into the combustion chamber by high-pressure fuel injector. The fuel atomization and evaporation process takes place due to the interaction of the small fuel particles generated by the injector and the in-cylinder air motion. Experimental study on the spray and mixing process is difficult and expensive, which has been recognized as a major obstacle towards the optimization of the combustion chamber geometry, engine components and the injection strategies.
Technical Paper

An Integrated Testing and CAE Application Methodology for Curtain Airbag Development

2005-04-11
2005-01-0289
The Curtain Airbag (CAB) is used currently to provide head and neck protection for the front-seat and rear-seat vehicle occupants during side-impact collisions and vehicle rollovers. The coated fabric materials are used in CABs for occupant protection in side impact and rollover events. In this paper the design and development study of CABs is described by using simulation and physical tests. The mechanical properties for the airbag material are determined by uniaxial test in the fill and warp directions. Shear strength is also evaluated by using the uniaxial test, but the specimen is cut along 45° angle. These test values are used in the finite element (FE) simulations. In this paper, a methodology of the design study is discussed. A Free Motion Headform (FMH) impacting a pole with a pillow shaped airbag is used in the design study. The influences of CAB design parameters such as pressure, chamber width, impact speed and hit location are evaluated.
X