Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Ford Motor / Dow Automotive Design Team Solves Knee Bolster Problems on the 1997 F-Series Pickup and Expedition

1998-02-23
980441
The 1997 F-Series and Expedition Instrument Panel programs were initially launched with steering column and glove compartment knee bolsters constructed of compression molded, glass filled polypropylene. First run capability of the material at production speeds was only 65 percent due primarily to dimensional stability (warp), paint adhesion, and excessive rework issues. A Ford APO (now Visteon) / Dow Automotive† team was formed to seek a replacement material / design for the glass filled polypropylene material which would solve the problems. The new material system had to meet or exceed current FMVSS 208 crash performance standards, provide improved quality and reduce variable and scrap costs all with a minimum tooling investment. Using Dow PULSE™ PC/ABS resin, the team designed / implemented a new knee bolster system in 12 months.
Technical Paper

Reduction in Vehicle Temperatures and Fuel Use from Cabin Ventilation, Solar-Reflective Paint, and a New Solar-Reflective Glazing

2007-04-16
2007-01-1194
A new type of solar-reflective glass that improves reflection of the near-infrared (NIR) portion of the solar spectrum has been developed. Also developed was a prototype solar-reflective paint that increases the NIR reflection of opaque vehicle surfaces while maintaining desired colors in the visible portion of the spectrum. Both of these technologies, as well as solar-powered parked car ventilation, were tested on a Cadillac STS as part of the Improved Mobile Air Conditioning Cooperative Research Program (I-MAC). Significant reductions in interior and vehicle skin temperatures were measured. The National Renewable Energy Laboratory (NREL) performed an analysis to determine the impact of reducing the thermal load on the vehicle. A simplified cabin thermal/fluid model was run to predict the potential reduction in A/C system capacity. The potential reduction in fuel use was calculated using a vehicle simulation tool developed by the U.S. Department of Energy (DOE).
X