Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

A New Technique to Determine the Burning Velocity in a Gasoline Direct Injection Engine

2014-04-01
2014-01-1176
Many approaches have been taken to determine the burning velocity in internal combustion engines. Experimentally, the burning velocity has been determined in optically accessible gasoline engines by tracking the propagation of the flame front from the spark plug to the end of the combustion chamber. These experiments are costly as they require special imaging techniques and major modifications in the engine structure. Another approach to determine the burning velocity is from 3D CFD simulation models. These models require basic information about the mechanisms of combustion which are not available for distillate fuels in addition to many assumptions that have to be made to determine the burning velocity. Such models take long periods of computational time for execution and have to be calibrated and validated through experimentation.
Technical Paper

Coolant Flow Control Strategies for Automotive Thermal Management Systems

2002-03-04
2002-01-0713
The automotive thermal management system is responsible for maintaining engine and passenger compartment temperatures, which promote normal combustion events and passenger comfort. This system traditionally circulates a water ethylene glycol mixture through the engine block using a belt-driven water pump, wax pellet thermostat valve, radiator with electric fan, and heater core. Although vehicle cooling system performance has been reliable and acceptable for many decades, advances in mechatronics have permitted upgrades to powertrain and chassis components. In a similar spirit, the introduction of a variable speed electric water pump and servo-motor thermostat valve allows ECU-based thermal control. This paper examines the integration of an electric water pump and intelligent thermostat valve to satisfy the engine's basic cooling requirements, minimize combustion chamber fluctuations due to engine speed changes, and permit quick heating of a cold block.
Technical Paper

The Effects of Octane, Sensitivity and K on the Performance and Fuel Economy of a Direct Injection Spark Ignition Vehicle

2014-04-01
2014-01-1216
This study investigates the effects of octane quality on the performance, i.e., acceleration and power, and fuel economy (FE) of one late model US vehicle, which is powered by a small displacement, turbocharged, gasoline direct injection (GDI) engine. The relative importance of the gasoline parameters Research and Motor Octane Number (RON and MON) in meeting the octane requirement of this engine to run at an optimum spark timing for the given demand was considered by evaluating the octane index (OI), where OI = (1-K) RON + K MON and K is a constant depending on engine design and operating conditions. Over wide open throttle (WOT) accelerations, the average K of this Pontiac Solstice was determined as −0.75, whereby a lower MON would give a higher OI, a higher knock resistance and better performance.
Technical Paper

Smart Thermostat and Coolant Pump Control for Engine Thermal Management Systems

2003-03-03
2003-01-0272
The introduction of mechatronic components into thermal-mechanical systems provides an opportunity to apply real time control strategies for enhanced engine performance. The traditional automotive thermal management system contains the engine, thermostat, air cooled radiator, and centrifugal pump driven by the crankshaft belt. A servo-motor valve and pump may be inserted into the vehicle's heating/cooling system to regulate the coolant flow with the engine control unit. To study these dual actuators, a scale experimental cooling system has been investigated. This automotive inspired thermal system contains a heater, smart thermostat valve, radiator, and variable speed electric pump. A lumped parameter model has been developed to describe the system's behavioral response and establish the basis for temperature regulation. Real time control algorithms are introduced for the synchronous regulation of the valve and pump.
Technical Paper

Numerical Study of an I4 Engine Oil Ejection During an Accidental Cap-off Running Condition for Two Baffle Designs

2022-03-29
2022-01-0398
Three-dimensional transient numerical simulations are conducted to study the oil flow in a four-cylinder internal-combustion engine while it operates without its oil filler cap on. The emphasis of the study is on analyzing the consequential oil ejection through the oil-cap open boundary. Navier-Stokes equations are solved together with the multiphase Volume of Fluid (VOF) model and the k-ϵ turbulence model. The engine crank shaft is mechanically connected to two cam shafts through a chain, which operates below the oil-filler duct. A baffle is located between the chain and the duct, shielding the latter to minimize oil ejection and potential spills. The chain geometry and dynamics are captured accurately through volume remesh and conformal mapping techniques. The motion of the four pistons, crank shaft, and two cam shafts is also considered. Retaining all these mechanical and geometrical details in the simulations is essential to obtain accurate oil ejection results.
X