Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Development and Characteristics of a Burner for Localized Fire Tests and an Evaluation of Those Fire Tests

2012-04-16
2012-01-0987
We have developed a new propane burner that satisfies the requirements of localized fire test which was presented in SAE technical paper 2011-01-0251. This paper introduces the specifications of this burner and reports its characteristics as determined from various fire exposure tests that we conducted in order to gather data. These tests included temperature and heat flux distribution on cylinder surfaces, which would be useful for the design of automotive compressed fuel cylinders. Our fire exposure tests included localized and engulfing fire tests to compare TPRD activation time, cylinder burst pressure and other parameters between different flame configurations and tests to identify the effects of an automotive compressed fuel cylinder on localized fire test results.
Technical Paper

Establishing Localized Fire Test Methods and Progressing Safety Standards for FCVs and Hydrogen Vehicles

2011-04-12
2011-01-0251
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 11 years. In the past couple of years, significant attention has been directed toward a revision to the standard for vehicular hydrogen systems, SAE J2579(1). In addition to streamlining test methodologies for verification of Compressed Hydrogen Storage Systems (CHSSs) as discussed last year,(2) the working group has been considering the effect of vehicle fires, with the major focus on a small or localized fire that could damage the container in the CHSS and allow a burst before the Pressure Relief Device (PRD) can activate and safely vent the compressed hydrogen stored from the container.
Technical Paper

Improvement of Flame Exposure Test for High Pressure Hydrogen Cylinders to Achieve High Reliability and Accuracy

2006-04-03
2006-01-0128
To achieve a method for flame exposure testing of high-pressure cylinders in automobiles that allows fair evaluations to be made at each testing institute and also provides high testing accuracy, we investigated the effects of the flame scale of the fire source, the fuel type, the shape of the pressure relief device shield, and the ambient temperature through experiments and numerical simulation. We found that, while all of these are factors that influence evaluation results, the effects of some factors can be reduced by increasing the flame size. Therefore, a measurement technique to quantitatively determine the flame size during the test is required. Measuring temperatures at the top of each cylinder is a candidate technique. Furthermore, flame exposure tests to be conducted on cylinders as single units must ensure safety during a vehicle fire.
Technical Paper

Ignition Process of Intermittent Short-Circuit on Modeled Automobile Wires

1996-02-01
960395
Our study was conducted to demonstrate the primary factors involved in fires which result from an automobile's electrical wire harness system with fuses. In our experiments we used modeled automobile wire harnesses to study the processes of ignition and the resultant fires. Current was passed through blade type fuses to a portion of the harness and was intermittently short-circuited by a grounded metal plate. The nominal current ratings of the fuses we used were lower than or equal to 30 amperes [A], and the operating current was 30A at 12 Volts. Current flowed to the harness specimens through a DC power source. We found that electrical tracking with scintillation, caused by a weak electric flow through carbonized wire insulation, rarely generated flames in the wire harnesses without blowing the fuse. Ignition was never observed on the insulation near the areas shorted by the arc and/or overloaded currents going to the wire elements.
Technical Paper

Effect of Alcohol Fuels on Fuel-Line Materials of Gasoline Vehicles

2005-10-24
2005-01-3708
In 1999, some Japanese fuel suppliers sold highly concentrated alcohol fuels, which are mixtures of gasoline and oxygenates, such as alcohol or ether, in amounts of 50% or more. In August 2001, it was reported that some vehicle models using the highly concentrated alcohol fuels encountered fuel leakage and vehicle fires due to corrosion of the aluminum used for the fuel-system parts. The Ministry of Economy, Trade and Industry (METI) and the Ministry of Land, Infrastructure and Transport Government of Japan (MLIT) jointly established the committee on safety for highly concentrated alcohol fuels in September 2001. The committee consisted of automotive technology and metal corrosion experts knowledgeable about preventing such accidents and ensuring user safety. Immersion tests were conducted on metals and other materials used for the fuel-supply system parts to determine the corrosion resistance to each alcohol component contained in the highly concentrated alcohol fuels.
Journal Article

Comparison of Fires in Lithium-Ion Battery Vehicles and Gasoline Vehicles

2014-04-01
2014-01-0428
Electric vehicles have become more popular and may be involved in fires due to accidents. However, characteristics of fires in electric vehicles are not yet fully understood. The electrolytic solution of lithium-battery vehicles is inflammable, so combustion characteristics and gases generated may differ from those of gasoline cars. Therefore, we conducted fire tests on lithium-ion battery vehicles and gasoline vehicles and investigated the differences in combustion characteristics and gases generated. The fire tests revealed some differences in combustion characteristics. For example, in lithium-ion battery vehicles, the battery temperature remained high after combustion of the body. However, there was almost no difference in the maximum CO concentration measured 0.5 to 1 m above the roof and 1 m from the side of the body. Furthermore, HF was not detected in either type of vehicle when measured at the same positions as for CO.
X