Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A More Completely Defined CELSS

1994-06-01
941292
A CELSS has been defined based on current or near-term technology. The CELSS was sized to support the metabolic load of four people on the Moon for ten years. A metabolic load of 14 MJ/person/day is assumed, including an average of 2.6 hr of EVA/person/day. Close to 100% closure of water, and oxygen, and 85% closure of the food loop is assumed. With 15% of the calories supplied from Earth, this should provide adequate dietary variety for the crew along with vitamin and mineral requirements. Other supply and waste removal requirements are addressed. The basic shell used is a Space Station Freedom 7.3 m (24 ft) module. This is assumed to be buried in regolith to provide protection from radiation, meteoroids, and thermal extremes. A solar dynamic power system is assumed, with a design life of 10 years delivering power at 368 kWh/kg. Initial estimates of size are that 73 m2 of plant growth area are required, giving a plant growth volume of about 73 m3.
Technical Paper

Computer Aided Design and Graphics Techniques for EVA Analysis

1994-06-01
941558
The size and complexity of Space Station has driven the need for an accurate, reliable analytical tool to assess the extravehicular activity (EVA) crew interfaces at the worksite. On previous spacecraft, each worksite was developed and validated through Neutral Buoyancy underwater testing by the crew using mockups. For spacecraft requiring a significant amount of EVA over large areas, like Space Station, the cost of conducting underwater tests for each of the many hundred worksites becomes prohibitive. Therefore, limited testing must be augmented by accurate graphical analysis. The Unigraphics II, which is the Computer Aided Design (CAD) system for the International Space Station Alpha (ISSA) Product Group 1 design, was selected and developed. It has a major advantage of easy and rapid access to the accurate and updated Space Station design. The design can be rapidly obtained electronically from layouts, detail drawings, assembly drawings or the Electronic Development Fixture (EDF).
Technical Paper

Microgravity Payload Vibration Isolation System Development

1994-06-01
941416
The objective of this paper is to present results of MDA's payload vibration isolation system research and development program. A unique isolation system with passive or active capabilities designed to provide isolation down to 10-6 g was developed and tested in our 1-g testbed under simulated microgravity conditions. Fluid and electrical umbilicals are also included in the system. The established isolation system performance requirements were met and the testbed data were used to refine our analytical models for predicting flight performance. Simulations using an updated Space Station configuration showed that the payload microgravity requirement can be met by upgrading the hardware from laboratory to flight tolerances and improving the control system design. The next step is to flight test the systems verified in 1 g on the STS/SPACEHAB using a middeck locker size development unit.
X