Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

2011-05-17
2011-01-1734
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations.
Technical Paper

Engine Icing Modeling and Simulation (Part I): Ice Crystal Accretion on Compression System Components and Modeling its Effects on Engine Performance

2011-06-13
2011-38-0025
During the past two decades the occurrence of ice accretion within commercial high bypass aircraft turbine engines under certain operating conditions has been reported. Numerous engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion such as degraded engine performance, engine roll back, compressor surge and stall, and even flameout of the combustor. As ice crystals are ingested into the engine and low pressure compression system, the air temperature increases and a portion of the ice melts allowing the ice-water mixture to stick to the metal surfaces of the engine core. The focus of this paper is on estimating the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper it was necessary to initially assume a temperature range in which engine icing would occur.
Technical Paper

Fundamental Ice Crystal Accretion Physics Studies

2011-06-13
2011-38-0018
Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations.
Technical Paper

Power System Monitoring and Source Control of the Space Station Freedom DC-Power System Testbed

1992-08-03
929300
Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation.
Technical Paper

NASA's Advanced Life Support Technology Program

1994-06-01
941290
For reasons of safety as well as cost, increasingly lengthy space missions at unprecedented distances from Earth in the 21st century will require reductions in consumables and increases in the autonomy of spacecraft life support systems. Advanced life support technologies can increase mission productivity and enhance science yield by achieving reductions in the mass, volume, and power required to support human needs for long periods of time in sterile and hostile environments. Current investment in developing advanced life support systems for orbital research facilities will increase the productivity of these relatively near-term missions, while contributing to the technology base necessary for future human exploration missions.
Technical Paper

Traction Drive System Design Considerations for A Lunar Roving Vehicle

1970-02-01
700023
For an optimum design, the weight, energy consumption, and operational flexibility of the traction drive system for a lunar roving vehicle must be considered along with the power supply, motor, and power train. Other problems considered in this paper include: environment and motor dissipation; motor type (a-c or d-c) and commutation if d-c; motor controller (switching of large currents); delivery of torque at varying speeds; the power train; use of regenerative braking and conservation of energy; and power supply voltage variation. These problems are studied in the light of certain general system specifications, which fall into weight, performance, and environment categories. Tradeoff studies are considered for purposes of optimization in each of these areas. Special consideration is given to the controller and system design as it pertains to regenerative braking and the conservation of energy.
Technical Paper

Mathematical Modeling Via Direct Use of Vibration Data

1969-02-01
690615
The process of reducing a physical system to a mathematical representation is a prevalent task mutual to all fields of analysis. Sometimes the system of equations, or mathematical model as commonly known, will be modified on a trial and error basis to make the model respond in some predetermined fashion or react so as to match behavioral data obtained from the actual physical system. This paper presents a survey of activities to produce logically based schemes to generate mathematical models by making use of experimentally derived information. Primary attention is given to modeling of mechanical structures for purposes of dynamic analysis. Emphasis is given to current effort at Goddard and in particular to the recent studies designed to verify the practical effectiveness of a specific modeling scheme. Strengths and weaknesses of the various modeling schemes are discussed.
Journal Article

Altair Lander Life Support: Design Analysis Cycles 1, 2, and 3

2009-07-12
2009-01-2477
NASA is working to develop a new lunar lander to support lunar exploration. The development process that the Altair project is using for this vehicle is unlike most others. In “Lander Design Analysis Cycle 1” (LDAC-1), a single-string, minimum functionality design concept was developed, including life support systems for different vehicle configuration concepts. The first configuration included an ascent vehicle and a habitat with integral airlocks. The second concept analyzed was a combined ascent vehicle-habitat with a detachable airlock. In LDAC-2, the Altair team took the ascent vehicle-habitat with detachable airlock and analyzed the design for the components that were the largest contributors to the risk of loss of crew (LOC). For life support, the largest drivers were related to oxygen supply and carbon dioxide control. Integrated abort options were developed at the vehicle level.
X