Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Engine Icing Modeling and Simulation (Part I): Ice Crystal Accretion on Compression System Components and Modeling its Effects on Engine Performance

2011-06-13
2011-38-0025
During the past two decades the occurrence of ice accretion within commercial high bypass aircraft turbine engines under certain operating conditions has been reported. Numerous engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion such as degraded engine performance, engine roll back, compressor surge and stall, and even flameout of the combustor. As ice crystals are ingested into the engine and low pressure compression system, the air temperature increases and a portion of the ice melts allowing the ice-water mixture to stick to the metal surfaces of the engine core. The focus of this paper is on estimating the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper it was necessary to initially assume a temperature range in which engine icing would occur.
Technical Paper

Fundamental Ice Crystal Accretion Physics Studies

2011-06-13
2011-38-0018
Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations.
X