Refine Your Search

Topic

Author

Search Results

Technical Paper

Comparison of Partial and Total Dilution Systems for the Measurement of Polycyclic Aromatic Hydrocarbons and Hydrocarbon Speciation in Diesel Exhaust

2020-09-15
2020-01-2190
Two methods of sampling exhaust emissions are typically used for characterizing emissions from diesel engines: total dilution which uses a constant volume sampling (CVS) system and partial flow dilution which relies on proportionally diluting a small part from the main exhaust stream. The CVS dilutes the entire exhaust flow to a constant volumetric flowrate which allows for proportional sampling of the exhaust species during transient engine operation. For partial dilution sampling during transient engine operation, obtaining a proportional sample is more rigorous and dilution of the extracted sample must be continuously changed throughout the cycle in order for the extracted sample flowrate to be proportional to the continuously changing exhaust flow. Typically, regulated emissions measured using both methods for an engine platform have shown good correlation. The focus for this work was on the experimental investigation of the two methods for the measurement of unregulated species.
Journal Article

Extension of Analytical Methods for Detailed Characterization of Advanced Combustion Engine Emissions

2016-10-17
2016-01-2330
Advanced combustion strategies used to improve efficiency, emissions, and performance in internal combustion engines (IC) alter the chemical composition of engine-out emissions. The characterization of exhaust chemistry from advanced IC engines requires an analytical system capable of measuring a wide range of compounds. For many years, the widely accepted Coordinating Research Council (CRC) Auto/Oil procedure[1,2] has been used to quantify hydrocarbon compounds between C1 and C12 from dilute engine exhaust in Tedlar polyvinyl fluoride (PVF) bags. Hydrocarbons greater than C12+ present the greatest challenge for identification in diesel exhaust. Above C12, PVF bags risk losing the higher molecular weight compounds due to adsorption to the walls of the bag or by condensation of the heavier compounds. This paper describes two specialized exhaust gas sampling and analytical systems capable of analyzing the mid-range (C10 - C24) and the high range (C24+) hydrocarbon in exhaust.
Journal Article

Impact of EGR Quality on the Total Inert Dilution Ratio

2016-04-05
2016-01-0713
A series of tests were performed on a gasoline powered engine with a Dedicated EGR® (D-EGR®) system. The results showed that changes in engine performance, including improvements in burn rates and stability and changes in emissions levels could not be adequately accounted for solely due to the presence of reformate in the EGR stream. In an effort to adequately characterize the engine's behavior, a new parameter was developed, the Total Inert Dilution Ratio (TIDR), which accounts for the changes in the EGR quality as inert gases are replaced by reactive species such as CO and H2.
Journal Article

Development of a Synthetic Diesel Exhaust

2008-04-14
2008-01-0067
A two-phase study was performed to establish a standard diesel exhaust composition which could be used in the future development of light-duty diesel exhaust aftertreatment. In the first phase, a literature review created a database of diesel engine-out emissions. The database consisted chiefly of data from heavy-duty diesel engines; therefore, the need for an emission testing program for light- and medium-duty engines was identified. A second phase was conducted to provide additional light-duty vehicle emissions data from current technology vehicles. Engine-out diesel exhaust from four 2004 model light-duty vehicles with a variety of engine displacements was collected and analyzed. Each vehicle was evaluated using five steady-state engine operating conditions and two transient test cycles (the Federal Test Procedure and the US06). Regulated emissions were measured along with speciation of both volatile and semi-volatile components of the hydrocarbons.
Journal Article

Development of a Solid Exhaust Particle Number Measurement System Using a Catalytic Stripper Technology

2011-04-12
2011-01-0635
A solid particle number measurement system (SPNMS) was developed using a catalytic stripper (CS) technology instead of an evaporation tube (ET). The ET is used in commercially available systems, compliant with the Particle Measurement Program (PMP) protocol developed for European Union (EU) solid particle number regulations. The catalytic stripper consists of a small core of a diesel exhaust oxidation catalyst. The SPNMS/CS met all performance requirements under the PMP protocol. It showed a much better performance in removing large volatile tetracontane particles down to a size well below the PMP lower cut-size of 23 nm, compared to a SPNMS equipped with an ET instead of a CS. The SPNMS/CS also showed a similar performance to a commercially available system when used on a gasoline direct injection (GDI) engine exhaust.
Journal Article

The Effects of Piston Crevices and Injection Strategy on Low-Speed Pre-Ignition in Boosted SI Engines

2012-04-16
2012-01-1148
The spark ignition (SI) engine has been known to exhibit several different abnormal combustion phenomena, such as knock or pre-ignition, which have been addressed with improved engine design or control schemes. However, in highly boosted SI engines, Low-Speed Pre-Ignition (LSPI), a pre-ignition event typically followed by heavy knock, has developed into a topic of major interest due to its potential for engine damage. Previous experiments associated increases in hydrocarbon emissions with the blowdown event of an LSPI cycle [1]. Also, the same experiments showed that there was a dependency of the LSPI activity on fuel and/or lubricant compositions [1]. Based on these findings it was hypothesized that accumulated hydrocarbons play a role in LSPI and are consumed during LSPI events. A potential source for accumulated HC is the top land piston crevice.
Technical Paper

Aging of Zeolite Based Automotive Hydrocarbon Traps

2007-04-16
2007-01-1058
This paper analyzes the aging of zeolite based hydrocarbon traps to guide development of diagnostic algorithms. Previous research has shown the water adsorption ability of zeolite ages along with the hydrocarbon adsorption ability, and this leads to a possible diagnostic algorithm: the water concentration in the exhaust can be measured and related to aging. In the present research, engine experiments demonstrate that temperature measurements are also related to aging. To examine the relationship between temperature-based and moisture-based diagnostic algorithms, a transient, nonlinear heat and mass transfer model of the exhaust during cold-start is developed. Despite some idealizations, the model replicates the qualitative behavior of the exhaust system. A series of parametric studies reveals the sensitivity of the system response to aging and various noise factors.
Technical Paper

Performance Test Results of a New On Board Emission Measurement System Conformed with CFR Part 1065

2007-04-16
2007-01-1326
A new on-board portable emission measurement system (PEMS) for gaseous emissions has been designed and developed to meet CFR Part 1065 requirements. The new system consists of a heated flame ionization detector (HFID) for the measurement of total hydrocarbon, a heated chemiluminescence detector (HCLD) for the measurement of NOx, and a heated non-dispersive infra-red detector (HNDIR) for the measurement of CO and CO2. The oxygen interference and relative sensitivity of several hydrocarbon components have been optimized for the HFID. The CO2 and H2O quenching effect on the HCLD have been compensated using measured CO2 and H2O concentration. The spectral overlap and molecular interaction of H2O on the HNDIR measurement has also been compensated using an independent H2O concentration measurement. The basic performance of the new on-board emission measurement system has been verified accordingly with CFR part 1065 and all of the performances have met with CFR part 1065 requirement.
Technical Paper

The Potential for Achieving Low Hydrocarbon and NOx Exhaust Emissions from Large Light-Duty Gasoline Vehicles

2007-04-16
2007-01-1261
Two large, heavy light-duty gasoline vehicles (2004 model year Ford F-150 with a 5.4 liter V8 and GMC Yukon Denali with a 6.0 liter V8) were baselined for emission performance over the FTP driving cycle in their stock configurations. Advanced emission systems were designed for both vehicles employing advanced three-way catalysts, high cell density ceramic substrates, and advanced exhaust system components. These advanced emission systems were integrated on the test vehicles and characterized for low mileage emission performance on the FTP cycle using the vehicle's stock engine calibration and, in the case of the Denali, after modifying the vehicle's stock engine calibration for improved cold-start and hot-start emission performance.
Technical Paper

Lower Explosion Limits and Compositions of Middle Distillate Fuel Vapors

1998-10-19
982485
Lower explosion limits (LEL) and the chemical compositions of JP-8, Jet A and JP-5 fuel vapors were determined in a sealed combustion vessel equipped with a spark igniter, a gas-sampling probe, and sensors to measure pressure rise and fuel temperature. Ignition was detected by pressure rise in the vessel. Pressure rises up to 60 psig were observed near the flash points of the test fuels. The fuel vapors in the vessel ignited from as much as 11°F below flash-point measurements. Detailed hydrocarbon speciation of the fuel vapors was performed using high-resolution gas chromatography. Over 300 hydrocarbons were detected in the vapors phase. The average molecular weight, hydrogen to carbon ratio, and LEL of the fuel vapors were determined from the concentration measurements. The jet fuel vapors had molecular weights ranging from 114 to 132, hydrogen to carbon ratios of approximately 1.93, and LELs comparable to pure hydrocarbons of similar molecular weight.
Technical Paper

Comparison of Four Sampling Methods for Semi-volatile Organic Compounds in Gas Phase Diesel Engine Exhausts

2008-10-06
2008-01-2435
Newly designed Teflon® O-rings along with XAD-2 resin, stainless steel screens, lock rings, and glass cartridges were used to construct a new semi-volatile organic compounds (SVOC's) sampling device. This new sampling device allows direct and repeated sampling, extraction, and cleaning without ever having to be disassembled or reassembled. This new XAD-2 glass cartridge (X2) was compared with three other sampling methods namely Empore® membrane (EM), hexane impinger (HI), and “Cold Trap” (CT) for SVOC sampling efficiency on diesel engine exhaust emissions. The X2 method showed the highest overall SVOC collection efficiency, followed by the EM and HI methods. The X2 method has higher trapping efficiency for the oxygenates, polycyclic aromatic hydrocarbons (PAH's), alkyl cyclohexanes, and the alkyl aromatics than the other three SVOC sampling methods. The HI method has the highest trapping efficiency for the normal alkanes.
Technical Paper

An Investigation of Sample Bag Hydrocarbon Emissions and Carbon Dioxide Permeation Properties

2004-03-08
2004-01-0593
The equipment for collecting dilute exhaust samples involves the use of bag materials (i.e., Tedlar®) that emit hydrocarbons that contaminate samples. This study identifies a list of materials and treatments to produce bags that reduce contamination. Based on the average emission rates, baked Tedlar®, Capran® treated with alumina deposition, supercritical CO2 extracted Kynar® and supercritical CO2 extracted Teflon NXT are capable of achieving the target hydrocarbon emission rate of less than 15 ppbC per 30 minutes. CO2 permeation tests were also performed. Tedlar, Capran, Kynar and Teflon NXT showed comparable average permeation rates. Based on the criteria of HC emission performance, changes in measured CO2 concentration, ease of sealing, and ease of surface treatment, none of the four materials could be distinguished from one another.
Technical Paper

Comparison of Emission Characteristics of Conventional, Hydrotreated, and Fischer-Tropsch Diesel Fuels in a Heavy-Duty Diesel Engine

2001-09-24
2001-01-3519
This study compared diesel exhaust emission from four different diesel fuels: a conventional low sulfur D2 diesel (0.03% sulfur, 28% aromatics), California Air Resources Board (CARB) diesel (0.015% sulfur, 8% aromatics), “Swedish” diesel (<0.001% sulfur, 4% aromatics), and a Fischer-Tropsch (F-T) diesel (<0.0001% sulfur, <0.1% aromatics) fuel. The comparison included regulated emissions, hydrocarbon speciation, air toxics, aldehydes and ketones, particle size distribution, and greenhouse gas emissions. Testing was conducted using a Cummins B-Series engine installed both in a heavy light-duty truck operating on a chassis dynamometer and on an engine dynamometer. The chassis driving cycles included city, highway, and aggressive driving operation. Engine dynamometer tests included the U.S. transient cycle.
Technical Paper

Cold-Start Hydrocarbon Collection for Advanced Exhaust Emission Control

1992-02-01
920847
This paper describes the findings of a laboratory effort to demonstrate improved automotive exhaust emission control with a cold-start hydrocarbon collection system. The emission control strategy developed in this study incorporated a zeolite molecular sieve in the exhaust system to collect cold-start hydrocarbons for subsequent release to an active catalytic converter. A prototype emission control system was designed and tested on a gasoline-fueled vehicle. Continuous raw exhaust emission measurements upstream and downstream of the zeolite molecular sieve revealed collection, storage, and release of cold-start hydrocarbons. Federal Test Procedure (FTP) emission results show a 35 percent reduction in hydrocarbons emitted during the cold-transient segment (Bag 1) due to adsorption by the zeolite.
Technical Paper

Emissions Measurements in a Steady Combusting Spray Simulating the Diesel Combustion Chamber

1992-02-01
920185
In-cylinder control of particulate emissions in a diesel engine depends on careful control and understanding of the fuel injection and air/fuel mixing process. It is extremely difficult to measure physical parameters of the injection and mixing process in an operating engine, but it is possible to simulate some diesel combustion chamber conditions in a steady flow configuration whose characteristics can be more easily probed. This program created a steady flow environment in which air-flow and injection sprays were characterized under non-combusting conditions, and emissions measurements were made under combusting conditions. A limited test matrix was completed in which the following observations were made. Grid-generated air turbulence decreased particulates, CO, and unburned hydrocarbons, while CO2 and NOx levels were increased. The turbulence accelerated combustion, resulting in more complete combustion and higher temperatures at the measurement location.
Technical Paper

Detailed Characterization of Criteria Pollutant Emissions from D-EGR® Light Duty Vehicle

2016-04-05
2016-01-1006
In this study, the criteria pollutant emissions from a light duty vehicle equipped with Dedicated EGR® technology were compared with emissions from an identical production GDI vehicle without externally cooled EGR. In addition to the comparison of criteria pollutant mass emissions, an analysis of the gaseous and particulate chemistry was conducted to understand how the change in combustion system affects the optimal aftertreatment control system. Hydrocarbon emissions from the vehicle were analyzed usin g a variety of methods to quantify over 200 compounds ranging in HC chain length from C1 to C12. The particulate emissions were also characterized to quantify particulate mass and number. Gaseous and particulate emissions were sampled and analyzed from both vehicles operating on the FTP-75, HWFET, US06, and WLTP drive cycles at the engine outlet location.
Technical Paper

Comparison of Hydrocarbon Measurement with FTIR and FID in a Dual Fuel Locomotive Engine

2016-04-05
2016-01-0978
Exhaust emissions of non-methane hydrocarbon (NMHC) and methane were measured from a Tier 3 dual-fuel demonstration locomotive running diesel-natural gas blend. Measurements were performed with the typical flame ionization detector (FID) method in accordance with EPA CFR Title 40 Part 1065 and with an alternative Fourier-Transform Infrared (FTIR) Spectroscopy method. Measurements were performed with and without oxidation catalyst exhaust aftertreatment. FTIR may have potential for improved accuracy over the FID when NMHC is dominated by light hydrocarbons. In the dual fuel tests, the FTIR measurement was 1-4% higher than the FID measurement of. NMHC results between the two methods differed considerably, in some cases reporting concentrations as much as four times those of the FID. However, in comparing these data it is important to note that the FTIR method has several advantages over the FID method, so the differences do not necessarily represent error in the FTIR.
Technical Paper

Unregulated Exhaust Emissions from Alternate Diesel Combustion Modes

2006-10-16
2006-01-3307
Regulated and unregulated exhaust emissions (individual hydrocarbons, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), and nitro-polynuclear aromatic hydrocarbons (NPAH)) were characterized for the following alternate diesel combustion modes: premixed charge compression ignition (PCCI), and low-temperature combustion (LTC). PCCI and LTC were studied on a PSA light-duty high-speed diesel engine. Engine-out emissions of carbonyl compounds were significantly increased for all LTC modes and for PCCI-Lean conditions as compared to diesel operation; however, PCCI-Rich produced much lower carbonyl emissions than diesel operations. For PAH compounds, emissions were found to be substantially increased over baseline diesel operation for LTC-Lean, LTC-Rich, and PCCI-Lean conditions. PCCI-Rich operation, however, gave PAH emission rates comparable to baseline diesel operation.
Technical Paper

Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

2005-05-11
2005-01-2193
Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent).
Technical Paper

Numerical and Experimental Characterization of the Dual-Fuel Combustion Process in an Optically Accessible Engine

2013-04-08
2013-01-1670
The dual-fuel combustion process of ethanol and n-heptane was characterized experimentally in an optically accessible engine and numerically through a chemical kinetic 3D-CFD investigation. Previously reported formaldehyde PLIF distributions were used as a tracer of low-temperature oxidation of straight-chained hydrocarbons and the numerical results were observed to be in agreement with the experimental data. The numerical and experimental evidence suggests that a change in the speed of flame propagation is responsible for the observed behavior of the dual-fuel combustion, where the energy release duration is increased and the maximum rate of pressure rise is decreased. Further, an explanation is provided for the asymmetrical energy release profile reported in literature which has been previously attributed to an increase in the diffusion-controlled combustion phase.
X