Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Scenario Regeneration using a Hardware-in-the-loop Simulation Platform to Study ABS and ESC Performance Benefits

2015-09-29
2015-01-2835
This study was performed to showcase the possible applications of the Hardware-in-the-loop (HIL) simulation environment developed by the National Highway Traffic Safety Administration (NHTSA), to test heavy truck crash avoidance safety systems. In this study, the HIL simulation environment was used to recreate a simulation of an actual accident scenario involving a single tractor semi-trailer combination. The scenario was then simulated with and without an antilock brake system (ABS) and electronic stability control (ESC) system to investigate the crash avoidance potential afforded by the tractor equipped with the safety systems. The crash scenario was interpreted as a path-following problem, and three possible driver intended paths were developed from the accident scene data.
Journal Article

Braking Behavior of Truck Drivers in Crash Imminent Scenarios

2014-09-30
2014-01-2380
Dynamic Brake Support (DBS) is a safety system that has been applied to various passenger cars and has been shown to be effective at assisting drivers in avoiding or mitigating rear-end collisions. The objective of a DBS system is to ensure that the brake system is applied quickly and at sufficient pressure when a driver responds to a collision imminent situation. DBS is capable of improving braking response due to a passenger car driver's tendency to utilize multi-stage braking. Interest is developing in using DBS on commercial vehicles. In order to evaluate the possible improvement in safety that could be realized through the use of DBS, driver braking behavior must first be analyzed to confirm that improvement is possible and necessary. To determine if this is the case, a study of the response of truck drivers' braking behavior in collision imminent situations is conducted. This paper presents the method of evaluation and results.
X