Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Journal Article

Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

2014-04-01
2014-01-1325
The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5°CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition.
Journal Article

Introduction of Fuel Economy Engine Oil Performance Target with New SAE Viscosity Grade

2016-04-05
2016-01-0896
Fuel economy improvement has been one of the most important challenges for the automotive industry, and the oil and additive industries. The automotive, oil, and additive industries including related organizations such as SAE, ASTM, and testing laboratories have made significant efforts to develop not only engine oil technologies but also engine oil standards over decades. The API S category and ILSAC engine oil standard are well known and widely used engine oil specifications [1] [2]. The development of an engine oil standard has important roles to ensure the quality of engine oils in the market and encourage industries to improve the engine oil performance periodically. However, the progress of technology advancement can go faster than the revision of engine oil standard. An introduction of new viscosity grades, SAE 0W-16 and 5W-16 is one good example. The 16 grade was added into the SAE J300 standard that defines viscosity grades for engine oils in April 2013 [3].
Technical Paper

Development of Super Olefin Bumper for Automobiles

1992-02-01
920525
The EMT (Elastomer Modified Thermoplastics) currently used in passenger car bumper fascia are limited in retaining low CLTE (Coefficient of Linear Thermal Expansion) and impact resistance, although they are highly rigid, which allows a reduction in weight, and also have high flowability during injection molding. We have developed a new bumper material called “Super Olefin Polymer” using a unique theory based upon a reversal of the current concept. The current polymer design concept of the EMT material is to compound and disperse the EPR (Ethylene Propylene Rubber) into the resin matrix such as polypropylene. We reversed the domain and the matrix, and treated the resin phase as the filler and the elastomer phase as the matrix.
Technical Paper

A Primer on Light Duty Vehicle Fuel Economy and Green House Gas Derivation

2016-04-05
2016-01-0981
Light Duty Vehicle corporate average fuel economy (CAFE), fuel economy label, and greenhouse gas (GHG) requirements are related but are very different. The fundamentals to obtain the data are the same, but to derive the required values, the final formulas have different components. These formulas, how to obtain the values which comprise the formulas, and how to use the test output to obtain the final result necessary to determine compliance with the standards are in regulations, but are not easily located. The information is contained in many documents; such as various sections in the Code of Federal Regulations, U.S. Environmental Protection Agency (EPA) Guidance documents, SAE International papers, American Society of Testing and Materials standards, and law suit judgments. This paper compiles the fundamentals of vehicle CAFE, fuel economy label, and GHG information. The intent is to provide a reference to the foundation of these requirements.
Technical Paper

Conceptualization and Implementation of a Dual-Purpose Battery Electric Powertrain Concept for an Urban Utility/Activity Vehicle

2016-04-05
2016-01-1182
The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the sixth generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to describe the development and implementation of a dual-purpose powertrain system enabling vehicle propulsion as well as stationary activities of the Deep Orange 6 vehicle concept. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics. The resulting market research, benchmarking, and brand essence studies were then converted to consumer needs and wants, to establish vehicle target and subsystem requirement, which formed the foundation of the Unique Selling Points (USPs) of the concept.
Technical Paper

A Method for Estimating Mileage Improvement and Emission Reductions Achievable by Hybrid-Electric Vehicles

1975-02-01
750194
The results of two derivations relating to the fuel economy of hybrid-electric vehicles (vehicles which employ both a heat engine and electric drive system) are presented and their use is illustrated through the examples of the University of Wisconsin and TRW Systems Group hybrid-electric vehicles. The method of mileage estimation employs a specific fuel-consumption versus torque-speed map for the heat engine under study and knowledge of the hybrid-vehicle dynamics and road-load power. The method is easily extended to estimation of emission reductions through use of specific-emission-production versus torque-speed maps and is applicable to hybrid vehicles with other than electrical energy-storage systems.
Technical Paper

Effects of Multiple Introduction of Fuel on Performance of a Compression Ignition Engine

1964-01-01
640723
An investigation into effects of multiple fuel introduction on isfc, rate-of-pressure rise, ignition delay, and smoothness of P-T diagram was conducted. Work, including pilot and manifold injection and the Vigom process, was conducted in a prechamber, an open chamber, and a Ricardo Comet chamber, all mounted on a CFR crankcase. Results show marked smoothening of the P-T diagram, with slight loss in fuel economy, particularly in the open chamber, and decrease in ignition delay for both high and low cetane fuels, especially at lower engine speeds. Data show that the quantity of preliminary fuel required for best performance changes considerably with cetane number of the fuel and with combustion chamber.
Technical Paper

Design and Optimization of a P4 mHEV Powertrain

2022-03-29
2022-01-0669
The EcoCAR Mobility Challenge (EMC) is the latest edition of the Advanced Vehicle Technology Competition (AVTC) series sponsored by the US Department of Energy. This competition challenges 11 North American universities to redesign a stock 2019 Chevrolet Blazer into an energy-efficient, SAE level 2-autonomous mild hybrid electric vehicle (mHEV) for use in the Mobility as a Service (MaaS) market. The Mississippi State University (MSU) team designed a P4 electric powertrain with an 85kW (113.99 HP) permanent magnet synchronous machine (PMSM) powered by a custom 5.4 kWh lithium-ion energy storage system. To maximize energy efficiency, Model Based Design concepts were leveraged to optimize the overall gear ratio for the P4 system. To accommodate this optimized ratio in the stock vehicle, a custom offset gearbox was designed that links the PMSM to the rear drive module.
Technical Paper

Highway Fuel Economy Testing of an RCCI Series Hybrid Vehicle

2015-04-14
2015-01-0837
In the current work, a series-hybrid vehicle has been constructed that utilizes a dual-fuel, Reactivity Controlled Compression Ignition (RCCI) engine. The vehicle is a 2009 Saturn Vue chassis and a 1.9L turbo-diesel engine converted to operate with low temperature RCCI combustion. The engine is coupled to a 90 kW AC motor, acting as an electrical generator to charge a 14.1 kW-hr lithium-ion traction battery pack, which powers the rear wheels by a 75 kW drive motor. Full vehicle testing was conducted on chassis dynamometers at the Vehicle Emissions Research Laboratory at Ford Motor Company and at the Vehicle Research Laboratory at Oak Ridge National Laboratory. For this work, the US Environmental Protection Agency Highway Fuel Economy Test was performed using commercially available gasoline and ultra-low sulfur diesel. Fuel economy and emissions data were recorded over the specified test cycle and calculated based on the fuel properties and the high-voltage battery energy usage.
Technical Paper

Comparison of Variable Valve Actuation, Cylinder Deactivation and Injection Strategies for Low-Load RCCI Operation of a Light Duty Engine

2015-04-14
2015-01-0843
While Low Temperature Combustion (LTC) strategies such as Reactivity Controlled Compression Ignition (RCCI) exhibit high thermal efficiency and produce low NOx and soot emissions, low load operation is still a significant challenge due to high unburnt hydrocarbon (UHC) and carbon monoxide (CO) emissions, which occur as a result of poor combustion efficiencies at these operating points. Furthermore, the exhaust gas temperatures are insufficient to light-off the Diesel Oxidation Catalyst (DOC), thereby resulting in poor UHC and CO conversion efficiencies by the aftertreatment system. To achieve exhaust gas temperature values sufficient for DOC light-off, combustion can be appropriately phased by changing the ratio of gasoline to diesel in the cylinder, or by burning additional fuel injected during the expansion stroke through post-injection.
X