Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Materials Testing for Finite Element Tire Model

2010-04-12
2010-01-0418
The use of accurate tire material properties is a major requirement for conducting a successful tire analysis using finite element method (FEM). Obtaining these material properties however poses a major challenge for tire modelers and researchers due to the complex nature of tire material and associated proprietary protections of constituent material properties by tire manufactures. In view of this limitation, a simple and effective procedure for generating tire materials data used in tire finite element analysis (FEA) is presented in this paper. All the tire test specimens were extracted from a tire product based on special considerations such as specimen dimension and shape, test standard, precondition of specimen and test condition for cords. The required material properties of tire rubber component, including hyperelasticity and viscoelasticity were obtained using simple uni-axial tension test.
Technical Paper

FE-Based Tire Loading Estimation for Developing Strain-Based Intelligent Tire System

2015-04-14
2015-01-0627
The development of intelligent tire technology from concept to application covers multi-disciplinary fields. During the course of development, the computational method can play a significant role in understanding tire behavior, assisting in the design of the intelligent tire prototype system and in developing tire parameters estimation algorithm, etc. In this paper, a finite element tire model was adopted for developing a strain-based intelligent tire system. The finite element tire model was created considering the tire's composite structure and nonlinear properties of its constituent materials, and the FE model was also validated by physical tests. The FE model is used to study tire strain characteristics by steady state simulation for straight line rolling, traction and braking, as well as cornering. Tire loading conditions were estimated by feature extraction and data fitting.
X