Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Sound Evaluation of Flow-Induced Noise with Simultaneous Measurement of Flow Regimes at TXV Inlet of Automotive Evaporators

2020-04-14
2020-01-1255
In the air conditioning system, flow-induced noise is very disturbing, including the noise generated in the expansion device and the heat exchangers. In the past few decades, most researches related to flow-induced noise focused on the relationship between the flow regimes near the expansion device and the amplitude of flow-induced noise when the measurements are not synched. In this paper, an experimental approach is used to explore the simultaneous relationships between flow-induced noise characteristics and flow regimes at the inlet of TXV of evaporators used in automobiles. A pumped R134a loop with microphones and transparent visualization sections is used to simulate the vapor compression system. Also, the paper evaluates the severity of flow-induced noise from not only the amplitude of noise but also the frequency of noise with a parameter called psychoacoustic annoyance (PA).
Journal Article

Flow Visualization and Experimental Measurement of Compressor Oil Separator

2018-04-03
2018-01-0067
This article presents basic separation mechanisms with coalescing/impinging separators studied as the add-on to current popular centrifugal designs. The coalescence and impingement of oil on wire mesh and wave-plates are visualized and tested to investigate the impact of geometry and flow conditions on oil separation efficiency. Re-entrainment phenomenon is explained based on the mass balance. Oil mist flow at the swashplate reciprocating compressor discharge is quantified by video processing method to provide detailed information of the oil droplets. The physics behind oil separator is illustrated by visualization and measurement in this study, which gives useful guidelines for oil separator design and operation. The flow visualization shows the details of oil passing through different oil separation structures. Videos are quantified to provide information like droplet size distribution and liquid volume fraction.
Technical Paper

Modeling of an Integrated Internal Heat Exchanger and Accumulator in R744 Mobile Air-Conditioning Applications

2020-04-14
2020-01-0153
Carbon dioxide (CO2 or R744) is a promising next-generation refrigerant for mobile air-conditioning applications (MAC), which has the advantages of good heating performance in cold climates and environmental-friendly properties. This paper presents a simulation model of an integrated internal heat exchanger (IHX) and accumulator (Acc) using the finite volume method. The results are validated by a group of experimental data collected with different transcritical R744 mobile air-conditioner and heat pump (MHP) systems, and the error was within ±10%. The impacts of refrigerant mass flow rate and operating temperatures on the heat transfer rate of the IHX, improvement on refrigeration capacity and the liquid level in the Acc were studied. Results show that the net benefits of IHX are significant in AC mode, while it helps preventing flooding of the compressor in MHP mode.
Technical Paper

Controlling Strategy for the Performance and NOx Emissions of the Hydrogen Internal Combustion Engines with a Turbocharger

2020-04-14
2020-01-0256
Hydrogen fuel is a future energy to solve the problems of energy crisis and environmental pollution. Hydrogen internal combustion engines can combine the advantage of hydrogen without carbon pollution and the main basic structure of the traditional engines. However, the power of the port fuel injection hydrogen engines is smaller than the same volume gasoline engine because the hydrogen occupies the volume of the cylinder and reduces the air mass flow. The turbocharger can increase the power of hydrogen engines but also increase the NOx emission. Hence, a comprehensive controlling strategy to solve the contradiction of the power, BTE and NOx emission is important to improve the performance of hydrogen engines. This paper shows the controlling strategy for a four-stroke, 2.3L hydrogen engine with a turbocharger. The controlling strategy divides the operating conditions of the hydrogen engine into six parts according to the engine speeds and loads.
Journal Article

Framework for Unmanned Aircraft Systems Safety Risk Management

2011-10-18
2011-01-2688
Although Unmanned Aircraft Systems (UAS) have now for some time been used in segregated airspace where separation from other air traffic can be assured, potential users have interests to deploy UAS in non segregated airspace. Recent technological and operational improvements give reason to believe that UAS safety and performance capabilities are maturing. But the skies can only really open up to UAS when there is an agreed upon UAS safety policy with commonly accepted UAS Safety Risk Management (SRM) processes enabling to show that the risks related to UAS operations in all the different airspace classes can be adequately controlled. The overall objective is to develop a UAS SRM framework, supporting regulators and applicants through provision of detailed guidelines for each SRM step to be conducted, including 1) system description, 2) hazard identification, 3) risk analysis, 4) risk assessment, 5) risk treatment.
Journal Article

Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

2012-10-22
2012-01-2148
NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.
Technical Paper

An Enhanced Computer-Based Process Simulation Model for the Cylinder Boring Process

1991-04-01
910957
This paper discusses an advanced computer-based process simulation model to predict cutting forces and surface error (also referred to as the lack of cylindricity) for the cylinder boring process. The model takes into consideration several enhanced features including dual and multiple-cylinder boring, back-boring, boring in the presence of windows/cavities, etc.. The model makes use of a Finite Element product model and the cutting force process model to generate a surface error profile at any axial level in the cylinder bore. A design of experiment approach is employed to study the influence of various process variables on bore surface error. The enhanced process simulation model may be used as a valuable tool in enhancing the simultaneous engineering of products and manufacturing processes.
Technical Paper

A Computer Simulation of Backhoe Type Excavators

1991-09-01
911838
This paper describes the simulation model of a backhoe excavator. The model uses a prescribed motion cycle and the objective of the program is to determine the power requirements for each of the cylinders as well as the total engine power requirement. Most computer simulations are developed by expressing the differential equations of motion for the system being studied. The known force inputs to the system are applied and the time response of the system is then obtained by numerically integrating the governing differential equations. This paper on the other hand develops the reverse of this. Utilizing a prescribed geometry and trajectory cycle for a linkage system as the input, the program solves for the types of force inputs that are required to achieve that trajectory. With the time dependence of the trajectory known, the total power required and the power required of each cylinder is also evaluated. A typical excavator linkage is shown in Fig. 1.
Technical Paper

Civil Certification of Avionics Modifications in Military Transport Category Aircraft

1997-10-01
975644
Recent changes in DoD procurement directives have encouraged the purchase of civilian products for use in certain military applications. One such application is the upgrade of avionics suites with the Global Positioning System (GPS) in military air transport aircraft to meet joint civil-military operational requirements. This paper reviews the Commercial Off-the-Shelf (COTS) concept and the proper use of TSOs, ACs, and FARs in both the design and integration process.
Technical Paper

In-Cylinder Measurements of Liquid Fuel During the Intake Stroke of a Port-Injected Spark Ignition Engine

1997-10-01
972945
The presence and distribution of liquid fuel within an engine cylinder at cold start may adversely affect the hydrocarbon emissions from port-injected, spark ignition engines. Therefore, high speed videos of the liquid fuel entry into the cylinder of an optical engine were recorded in order to assess the effect of various engine operating parameters on the amount of liquid fuel inducted into the cylinder, the sizes of liquid drops present and the distribution of the fuel within the cylinder. A 2.5L, V-6, port-injected, spark ignition engine was modified so that optical access is available throughout the entire volume of one of the cylinders. A fused silica cylinder is sandwiched between the separated block and head of the engine and a “Bowditch-type” piston extension is mounted to the production piston. The Bowditch piston has a fused silica crown so that visualization is possible through the top of the piston as well as through the transparent cylinder.
Technical Paper

Back-Flow Atomization in the Intake Port of Spark Ignition Engines

1997-10-01
972988
Drop size measurements were performed in the intake port of a motoring engine using a laser diffraction particle sizing technique. The experimental parameters which were varied include number of injection cycles, start of injection timing, engine speed and manifold pressure. Two injectors having different atomization and dispersion characteristics were used in the study, a production dual jet injector which produced Sauter Mean Diameters (SMDs) in the range of 250 to 400 μm and an air assist injector which had a line-of-sight SMD of 39 μm. In measurements with the dual jet injector, after initial injection, the quantity of fuel present in the intake port was observed to increase with each subsequent injection event, reaching a steady state value after 6 to 10 injection cycles. The SMD produced by the back-flow atomization was independent of the number of injection events and independent of engine speed over a range of 750 to 1500 RPM.
Technical Paper

Modeling Stochastic Performance and Random Failure

2007-07-09
2007-01-3027
High costs and extreme risks prevent the life testing of NASA hardware. These unavoidable limitations prevent the determination of sound reliability bounds for NASA hardware; thus the true risk assumed in future missions is unclear. A simulation infrastructure for determining these risks is developed in a configurable format here. Positive preliminary results in preparation for validation testing are reported. A stochastic filter simulates non-deterministic output from the various unit processes. A maintenance and repair module has been implemented with several levels of complexity. Two life testing approaches have been proposed for use in future model validation.
Technical Paper

Testing Heuristic Tools for Life Support System Analysis

2007-07-09
2007-01-3225
BioSim is a simulation tool which captures many basic life support functions in an integrated simulation. Conventional analyses can not efficiently consider all possible life support system configurations. Heuristic approaches are a possible alternative. In an effort to demonstrate efficacy, a validating experiment was designed to compare the configurational optima discovered by heuristic approaches and an analytical approach. Thus far, it is clear that a genetic algorithm finds reasonable optima, although an improved fitness function is required. Further, despite a tight analytical fit to data, optimization produces disparate results which will require further validation.
Technical Paper

The Commercial Aviation Alternative Fuels Initiative

2007-09-17
2007-01-3866
This paper describes the recently established Commercial Aviation Alternative Fuel Initiative (CAAFI), including its goals and objectives, as well as presents an alternate fuel roadmap that was originally generated by industry and refined by the CAAFI stakeholders. CAAFI is designed to coordinate the development and commercialization of “drop-in” alternate fuels (i.e. fuels that can directly supplement or replace crude oil derived jet fuels), as well as exploring the long-term potential of other fuel options. The ultimate goal is to ensure an affordable and stable supply of environmentally progressive aviation fuels that will enable continued growth of commercial aviation. This initiative is organized into four sub-groups: Research and Development (R&D), certification, environment, and economics & business. The R&D group seeks to identify promising new drop-in alternate fuels, and to foster coordination of development efforts.
Technical Paper

Usage of MTBF for Exposure Times of Undetected Faults in Safety Assessments

2007-09-17
2007-01-3831
Many of the certification regulations in 14 CFR Part 25 are by design, broad and as such, can be subject to large differences in the interpretation of what constitutes adequate compliance. Advisory Circulars (AC's) were developed for many of the regulations to assist industry, as well as certification personnel, with what is considered an acceptable, but not the only means, of compliance. However, there are many regulations where no advisory material is available. In these cases, the “acceptable means” of compliance can vary to a greater degree among the various aircraft certification offices. This difficulty is aggravated as new applicants and regulatory personnel enter the certification field. Recent discussions and interpretations on the usage of an avionic unit's mean time between failure or MTBF for its detectable faults as the basic repair rate for undetected or latent faults, is a subject area where no significant advisory material exists.
Technical Paper

The Effects of Cylinder Head Deformation and Asymmetry on Exhaust Valve Thermo-Mechanical Stresses

1998-02-23
981034
A geometrically accurate, three-dimensional finite element model of a Diesel engine exhaust valve and cylinder head assembly has been developed to analyze the effect of cylinder head interactions on exhaust valve stresses. Results indicate that a multi-lobed stress pattern occurs around the exhaust valve head due to cylinder head deformation, stiffness variations, and thermal asymmetry. Consequently, peak valve bending and hoop stresses from the three-dimensional model are 48% and 40% higher, respectively, than for the two-dimensional, axisymmetric model. These results indicate the degree of model complexity required for more accurate analyses of exhaust valve operating stresses.
Technical Paper

Adaptive Lift Control for a Camless Electrohydraulic Valvetrain

1998-02-23
981029
Camless actuation offers programmable flexibility in controlling engine valve events. However, a full range of engine benefits will only be available, if the actuation system can control lift profile characteristics within a particular lift event. Control of the peak value of valve lift is a first step in controlling the profile. The paper presents an adaptive feedback control of valve lift for a springless electrohydraulic valvetrain. The adaptive control maintains peak value of lift in presence of variations in engine speed, hydraulic fluid temperature and manufacturing variability of valve assemblies. The control design includes a reduced-order model of the system dynamics. Experimental results show dynamic behavior under various operating and environmental conditions and demonstrate advantages of adaptive control over the non-adaptive type.
Technical Paper

Model to Predict Hydraulic Pump Requirements for an Off-Road Vehicle

1990-09-01
901622
This paper describes and discusses a computer model that can be used to predict the hydraulic pump requirements of an excavator necessary to meet the specified productivity levels for a given set of design conditions. The model predicts the hydraulic cylinder flow rates, pressures, and power necessary to sustain a given work cycle. The study compares the results from a simulation of the excavator with actual test data obtained from a test vehicle taken during a typical work cycle.
Technical Paper

Smokeless Combustion within a Small-Bore HSDI Diesel Engine Using a Narrow Angle Injector

2007-04-16
2007-01-0203
Combustion processes employing different injection strategies in a High-Speed Direct Inject (HSDI) diesel engine were investigated using a narrow angle injector (70 degree). Whole-cycle combustion was visualized using a high-speed digital video camera. The liquid spray evolution process was imaged by the Mie-scattering technique. Different injection strategies were employed in this study including early pre-Top Dead Center (TDC) injection, post-TDC injection, multiple injection strategies with an early pre-TDC injection and a late post-TDC injection. Smokeless combustion was obtained under some operating conditions. Compared with the original injection angle (150 degree), some new combustion phenomena were observed for certain injection strategies. For early pre-TDC injection strategies, liquid fuel impingement is observed that results in some newly observed fuel film combustion flame (pool fires) following an HCCI-like weak flame.
Technical Paper

Computational Analysis of Biodiesel Combustion in a Low-Temperature Combustion Engine using Well-Defined Fuel Properties

2007-04-16
2007-01-0617
Biodiesel fuel can be produced from a wide range of source materials that affect the properties of the fuel. The diesel engine has become a highly tuned power source that is sensitive to these properties. The objectives of this research were to measure and predict the key properties of biodiesel produced from a broad range of source materials to be used as inputs for combustion modeling; and second to compare the results of the model with and without the biodiesel fuel definition. Substantial differences in viscosity, surface tension, density and thermal conductivity were obtained relative to reference diesel fuels and among the different source materials. The combustion model revealed differences in the temperature and emissions of biodiesel when compared to reference diesel fuel.
X