Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Effect of Cross Flow on Performance of a PEM Fuel Cell

2007-04-16
2007-01-0697
A serpentine flow channel is one of the most common and practical channel layouts for a PEM fuel cell since it ensures the removal of water produced in a cell. While the reactant flows along the flow channel, it can also leak or cross to neighboring channels via the porous gas diffusion layer due to a high pressure gradient. Such a cross flow leads to effective water removal in a gas diffusion layer thus enlarging the active area for reaction although this cross flow has largely been ignored in previous studies. In this study, neutron radiography is applied to investigate the liquid water accumulation and its effect on the performance of a PEM fuel cell. Liquid water tends to accumulate in the gas diffusion layer adjacent to the flow channel area while the liquid water formed in the gas diffusion layer next to the channel land area seems to be effectively removed by the cross leakage flow between the adjacent flow channels.
Technical Paper

An Analytical Analysis on the Cross Flow in a PEM Fuel Cell with Serpentine Channel

2008-04-14
2008-01-0314
A serpentine flow channel can be considered as neighboring channels connected in series, and is one of the most common and practical channel layouts for PEM fuel cells since it ensures the removal of liquid water produced in a cell with excellent performance and acceptable parasitic load. During the reactant flows along the flow channel, it can also leak or cross directly to the neighboring channel via the porous gas diffusion layer due to the high pressure gradient caused by the short distance. Such a cross flow leads to a larger effective flow area resulting in a substantially lower amount of pressure drop in an actual PEM fuel cell compared to the case without cross flow. In this work, an analytical solution is obtained for the cross flow in a PEM fuel cell with a serpentine flow channel based on the assumption that the velocity of cross flow is linearly distributed in the gas diffusion layer between two successive U-turns.
Technical Paper

Design of a Test Geometry to Characterize Sheared Edge Fracture in a Uniaxial Bending Mode

2023-04-11
2023-01-0730
The characterization of sheet metals under in-plane uniaxial bending is challenging due to the aspect ratios involved that can cause buckling. Anti-buckling plates can be employed but require compensation for contact pressure and friction effects. Recently, a novel in-plane bending fixture was developed to allow for unconstrained sample rotation that does not require an anti-buckling device. The objective of the present study is to design the sample geometry for sheared edge fracture characterization under in-plane bending along with a methodology to resolve the strains exactly at the edge. A series of virtual experiments were conducted for a 1.0 mm thick model material with different hardening rates to identify the influence of gage section length, height, and the radius of the transition region on the bend ratio and potential for buckling. Two specimen geometries are proposed with one suited for constitutive characterization and the other for sheared edge fracture.
Technical Paper

Numerical Prediction of the Autoignition Delay in a Diesel-Like Environment by the Conditional Moment Closure Model

2000-03-06
2000-01-0200
The autoignition delay of a turbulent methane jet in a Diesel-like environment is calculated by the conditional moment closure(CMC) model. Methane is injected into hot air in a constant volume chamber under various temperatures and pressures. Detailed chemical reaction mechanisms are implemented with turbulence-chemistry interaction treated by the first order CMC. The CMC model solves the conditional mean species mass fraction and temperature equations with the source term given in terms of the conditional mean quantities. The flow and mixing field are calculated by the transient SIMPLE algorithm with the k -ε model and the assumed beta function pdf. The CMC equations are solved by the fractional step method which sequentially treats the transport and chemical reaction terms in each time step. The predictions in quiescent homogeneous mixture are presented to evaluate the effects of turbulence in jet ignition.
Journal Article

Estimating the Strain-Based FLC of a Tube from Straight Tube Hydroforming Experiments and Numerical Models

2008-04-14
2008-01-1442
The Extended Stress-Based Forming Limit Curve (XSFLC) failure criterion has been shown to provide good qualitative and quantitative predictions of failure (necking) in straight tube hydro forming when the on the level of end-feed (EF) used during hydro forming, the failure criterion has a tendency to over predict failure pressure at low Keeler-Brazier (K-B) approximation is used to define the XSFLC failure curve. Depending EF and under predict failure pressure for high EF. The over/under predictions suggest that the strain-space εFLC, which the XSFLC is based on, has too high of a plane-strain intercept (FLCo), when it is obtained using the K-B approximation (developed for sheet metal).
X