Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Study of the Catalytic Reduction of NOx in Diesel Exhaust

1996-10-01
962042
Reduction of nitrogen oxides in Diesel exhaust gas is a challenging task. This paper reports results from an extensive study using Pt-based catalysts involving synthetic gas activity testing (SCAT), engine bench testing and tests on passenger cars. Preliminary SCAT work highlighted the importance of Pt-dispersion, and both SCAT and bench engine testing yielded comparable NOx conversions under steady state conditions at high HC:NOx ratios. On passenger cars in the European cycle without secondary fuel injection NOx conversion was lower than obtained in the steady state tests. Better conversion was obtained in the FTP cycle, where secondary injection was employed. Higher HC:NOx, ratios and more favourable temperature conditions which were present in the exhaust contributed to this higher conversion.
Technical Paper

Innovative Ultra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines: the 4-SPACE Project

2000-06-19
2000-01-1837
The purpose of the 4-SPACE (4-Stroke Powered gasoline Auto-ignition Controlled combustion Engine) industrial research project is to research and develop an innovative controlled auto-ignition combustion process for lean burn automotive gasoline 4-stroke engines application. The engine concepts to be developed could have the potential to replace the existing stoichiometric / 3-way catalyst automotive spark ignition 4-stroke engines by offering the potential to meet the most stringent EURO 4 emissions limits in the year 2005 without requiring DeNOx catalyst technology. A reduction of fuel consumption and therefore of corresponding CO2 emissions of 15 to 20% in average urban conditions of use, is expected for the « 4-SPACE » lean burn 4-stroke engine with additional reduction of CO emissions.
Technical Paper

The Effect of Fuel Specifications and Different Aftertreatment Systems on Exhaust Gas Odour and Non-Regulated Emissions at Steady State and Dynamic Operation of DI-Diesel Engines

1999-10-25
1999-01-3559
Diesel exhaust gas contains low molecular aliphatic carbonyl compounds and strongly smelling organic acids, which are known to have an irritant influence on eyes, nose and mucous membranes. Thus, diesel exhaust aftertreatment has to be considered more critically than that of gasoline engines, with respect to the formation of undesired by-products. The results presented here have been carried out as research work sponsored by the German Research Association for Internal Combustion Engines (FVV). The main objective of the three year project was to evaluate the behaviour of current and future catalyst technology on the one hand (oxidation catalyst, CRT system, SCR process), and regulated and certain selected non-regulated exhaust gas emission components and exhaust gas odour on the other hand.
X