Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Experimental Comparison of Heat Losses in Stepped-Bowl and Re-Entrant Combustion Chambers in a Light Duty Diesel Engine

2016-04-05
2016-01-0732
Heat loss is one of the greatest energy losses in engines. More than half of the heat is lost to cooling media and exhaust losses, and they thus dominate the internal combustion engine energy balance. Complex processes affect heat loss to the cylinder walls, including gas motion, spray-wall interaction and turbulence levels. The aim of this work was to experimentally compare the heat transfer characteristics of a stepped-bowl piston geometry to a conventional re-entrant diesel bowl studied previously and here used as the baseline geometry. The stepped-bowl geometry features a low surface-to-volume ratio compared to the baseline bowl, which is considered beneficial for low heat losses. Speed, load, injection pressure, swirl level, EGR rate and air/fuel ratio (λ) were varied in a multi-cylinder light duty engine operated in conventional diesel combustion (CDC) mode.
Technical Paper

Cylinder-to-Cylinder and Cycle-to-Cycle Variations at HCCI Operation With Trapped Residuals

2005-04-11
2005-01-0130
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. It is important to gain knowledge of the constraints and limits on the possible operating region. In this work, the emphasis is on investigating how cycle-to-cycle and cylinder-to-cylinder deviations limit the operating region, how these effects change in different parts of the operating region and how they can be controlled. At low load the cycle-to-cycle phenomena cause periodic behavior in combustion timing; together with cylinder deviations this is found responsible for decreasing the operating regime.
Technical Paper

A Mild Hybrid SIDI Turbo Passenger Car Engine with Organic Rankine Cycle Waste Heat Recovery

2019-09-09
2019-24-0194
While striving for more fuel-efficient vehicles, all possible measures are considered to increase the efficiency of the combustion engine powertrain. 48V mild hybrid technology is one such measure, SIDI (Spark Ignited Direct Injection) engines with Miller technology are another, while recovering energy from the engine’s waste heat (WHR) is yet another option. In this paper, results will be published from an advanced engineering project at Volvo Cars including all of these components. An ethanol based Organic Rankine Cycle (ORC) WHR-system was successfully built around a 4-cylinder, 2.0 litre SIDI-engine, including 48V mild hybrid technology, with vehicle packaging considered. A dedicated control system was also developed for the ORC system including communication between it and the engine. The ORC system uses the engine exhaust as the heat source, for which a purpose-built evaporator was designed and built to fit in the vehicle tunnel.
Technical Paper

Experimental Evaluation of Novel Thermal Barrier Coatings in a Single Cylinder Light Duty Diesel Engine

2019-09-09
2019-24-0062
The objective of this investigation was to improve the thermal properties of plasma sprayed thermal barrier coatings (TBC) for internal combustion engines. There is a need for further reduction of thermal conductivity and volumetric heat capacity and the negative effects on heat loss and combustion phasing of surface roughness and permeable porosity, typical for plasma sprayed coatings, should be minimized. Four measures for improvement of TBC properties were evaluated: i) modification of the coating's microstructure by using a novel suspension plasma spraying method, ii) application of gadolinium-zirconate, a novel ceramic material with low thermal conductivity, iii) polishing of the coating to achieve low surface roughness, and iv) sealing of the porous coating surface with a polysilazane. Six coating variants with different combinations of the selected measures were applied on the piston crown and evaluated in a single cylinder light duty diesel engine.
Technical Paper

Demonstration of Two-Dimensional Temperature Characterization of Valves and Transparent Piston in a GDI Optical Engine

2004-03-08
2004-01-0609
Thermographic phosphors thermometry was used to measure engine valves and transparent piston temperatures in two dimensions as well point wise of a running, optically accessible, gasoline direct injection engine. The engine, fueled with isooctane, was operated in continuous and skip-fire mode at 1200 and 2000 rpm. A calibration of the phosphorescence lifetime and spectral properties against temperature allowed temperature measurements between 25 and 600°C. Results from the measurements show the potential of the technique for two-dimensional mapping of engine walls, valves and piston temperatures inside the cylinder.
X