Refine Your Search

Search Results

Viewing 1 to 3 of 3
Standard

Mechanical Properties of Heat Treated Wrought Steels

2002-02-27
HISTORICAL
J413_200202
The figures in this SAE Information Report illustrate the principle that, regardless of composition, steels of the same cross-sectional hardness produced by tempering after through hardening will have approximately the same longitudinal1 tensile strength at room temperature. Figure 1 shows the relation between hardness and longitudinal tensile strength of 0.30 to 0.50% carbon steels in the fully hardened and tempered, as rolled, normalized, and annealed conditions. Figure 2 showing the relation between longitudinal tensile strength and yield strength, and Figure 3 illustrating longitudinal tensile strength versus reduction of area, are typical of steels in the quenched and tempered condition. Figure 3 shows the direct relationship between ductility and hardness and illustrates the fact that the reduction of area decreases as hardness increases, and that, for a given hardness, the reduction of area is generally higher for alloy steels than for plain carbon steels.
Standard

MECHANICAL PROPERTIES OF HEAT TREATED WROUGHT STEELS

1990-06-01
HISTORICAL
J413_199006
The figures in this SAE Information Report illustrate the principle that, regardless of composition, steels of the same cross sectional hardness produced by tempering after through hardening, will have approximately the same longitudinal1 tensile strength at room temperature. Figure 1 shows the relation between hardness and longitudinal tensile strength of 0.30 to 0.50% carbon steels in the fully hardened and tempered, as rolled, normalized, and annealed conditions. Figure 2 showing the relation between longitudinal tensile strength and yield strength, and Figure 3 illustrating longitudinal tensile strength versus reduction of area, are typical of steels in the quenched and tempered condition. Figure 3 shows the direct relationship between ductility and hardness and illustrates the fact that the reduction of area decreases as hardness increases, and that, for a given hardness, the reduction of area is generally higher for alloy steels than for plain carbon steels.
X