Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Impact of Control Methods on Dynamic Characteristic of High Speed Solenoid Injectors

2014-04-01
2014-01-1445
Accurate control of both the timing and quantity of injection events is critical for engine performance and emissions. The most serious problem which reduces the accuracy of the control operation in such systems is a time delay of the responsiveness for the opening and closing operation of the electromagnetic valve. Modern electronic control systems should be capable of driving high speed solenoid injectors at a very fast switch frequency with high efficiency and acceptable power requirements. In this paper, the dynamic characteristic of a high speed servo-hydraulic solenoid injector for diesel engine, with different driving circuits and control methods, is investigated. A pre-energizing control strategy based on a dual power supply is applied to speed up the opening response time of the injectors.
Technical Paper

Power Matching and Control Strategy of Plug-in Series Hybrid Electric Car

2010-10-25
2010-01-2195
In this paper, based on the plug-in series hybrid electric vehicle development project, the vehicle technology solutions and the match of power system parameters were analyzed. The vehicle control strategies were identified and optimized according to plug-in hybrid vehicle features. The plug-in series hybrid, rule-based logic threshold switching control strategy, charge depleting (CD) mode and charge-sustaining (CS) mode are chosen according to the key factors, such as the environment, performance requirements, technical requirements and cost. And then the structure and model of vehicle control strategy were established to carry out vehicle energy management and power system control. The parameter selection, electric drive system matching, energy storage system design based on the requirement of vehicle performance, system architecture and control strategy are presented.
Technical Paper

Evaporation Characteristics of n-Heptane Droplet Streams in a Heated Air Channel Flow

2016-04-05
2016-01-0843
An experimental study is presented on the evaporation of diluted droplet-laden two-phase jet flows within a heated air channel co-flow. In this study, n-heptane is pre-atomized by an ultrasonic nozzle to produce droplet cluster with a median diameter of about15μm, and a continuous cold air flow is applied to carry the fuel droplet cluster to emerge from a nozzle tube, producing a free turbulent jet of droplet stream. The droplet stream is then introduced as a central jet into a square-shaped channel with heated air co-flow for evaporation investigations. With flexibilities of the initial properties of droplet stream and surrounding conditions of channel flow, the axial evolution of droplet size is determined to characterize the evaporation behavior of n-heptane droplet stream under various boundary conditions. The equivalence ratios of droplet streams are varied by changing both the carrier-air flow rate and the fuel flow rate.
Technical Paper

The Effect of High-Power Capacitive Spark Discharge on the Ignition and Flame Propagation in a Lean and Diluted Cylinder Charge

2016-04-05
2016-01-0707
Research studies have suggested that changes to the ignition system are required to generate a more robust flame kernel in order to secure the ignition process for the future advanced high efficiency spark-ignition (SI) engines. In a typical inductive ignition system, the spark discharge is initiated by a transient high-power electrical breakdown and sustained by a relatively low-power glow process. The electrical breakdown is characterized as a capacitive discharge process with a small quantity of energy coming mainly from the gap parasitic capacitor. Enhancement of the breakdown is a potential avenue effectively for extending the lean limit of SI engine. In this work, the effect of high-power capacitive spark discharge on the early flame kernel growth of premixed methane-air mixtures is investigated through electrical probing and optical diagnosis.
Technical Paper

Transient Characteristics of Cold Start Emissions from a Two-Stage Direct Injection Gasoline Engines Employing the Total Stoichiometric Ratio and Local Rich Mixture Start-up Strategy

2012-04-16
2012-01-1068
To improve the cold start performance and to reduce the misfire occurrence at cold start, the start-up strategy of total stoichiometric ratio combined with local rich mixture was applied in the study. The effect of injection strategy (the 1st injection timing, 2nd injection timing, 1st and 2nd fuel injection proportion and ignition timing) on the cold start HC emissions in the initial 10 cycles were investigated in a Two stage direct injection (TSDI) gasoline engine. The transient HC and NO emissions in the initial 10 cycles were analyzed, when the fuels are injected in the only 1st cycle and in the followed all cycles. The transient misfiring HC emissions were compared between the single and two-stage injection modes. In addition, the unburned HC (UBHC) emissions in the 1st cycle are compared among the TSDI engine, Gasoline direct injection (GDI) engine, Port fuel injection (PFI) engine and Liquefied petroleum gaseous (LPG) engine at the stoichiometric ratio.
Technical Paper

Effect of Stratification on Ion Distribution in HCCI Combustion Using 3D-CFD with Detailed Chemistry

2013-10-14
2013-01-2512
Ion current sensing, which usually employs a spark plug as its sensor to obtain feedback signal from different types of combustion in SI engines, may be applied to HCCI combustion sensing instead of a prohibitively expensive piezoelectric pressure transducer. However, studies showed that the ion current detected by a spark plug sensor is a localized signal within the vicinity of the sensor's electrode gap, being affected by conditions around it. To find out better and feasible ion probe positions, a 3D-CFD model with a detailed surrogate mechanism containing 1423 species and 6106 reactions was employed to study the effect of stratification on ion distribution in HCCI combustion. The simulation results indicate that the monitor probe 1, 8 and 9 are more stable and reliable than the others. IONmax and dIONmax are more accurate to estimate CA50 and dQmax respectively.
Technical Paper

Cycle Resolved Combustion and Pre-Ignition Diagnostic Employing Ion Current in a PFI Boosted SI Engine

2015-04-14
2015-01-0881
An ion current sensor is employed in a 4 cylinder production SI engine for combustion diagnosis during combustion process, knock, and low speed pre-ignition (LSPI) detection. The results show that the ion current peak value and ion current peak phase have strong correlation with the cylinder pressure and pressure peak phase respectively. The COV of ion current integral value is greater than the COV of IMEP at the same operating condition. Results show that the ion current signal is sensitive to different lambdas. Using ion current signal, the knock in any given cylinder can be detected. Importantly, the ion sensor successfully detected the low speed pre-ignition (LSPI) about more than 20 °CA before spark ignition.
X