Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Map-Based Positioning Method for Vehicle Trajectory Control

2016-09-14
2016-01-1899
Aimed to provide an effective solution for control-oriented applications, this paper proposes a novel method using a high-precision digital map to achieve high-accuracy positioning with fast updating rate. First, the map is developed using a high-definition LiDAR (Velodyne HDL 64E) and a RTK-GNSS system, which contains lane-level waypoints, road width, curb and typical obstacles along the road. Next, a robust version of ICP (Iterative Closest Point) is proposed to clean the corresponding points of large errors on map matching (MM). Finally, based on the large set of data from the environmental map, an unscented Kalman filter (UKF) is applied to fuse GNSS signal and dead reckoning (DR) to estimate the position. Thus the searching scope on the map can be considerably reduced so that the matching speed can be greatly improved. The high-precision digital map can be used not only for global path planning, but also for local driving detection and path planning.
Technical Paper

Study on Reconfigurable Driving Force Allocation Strategy of Distributed Driving Electric Vehicle

2016-09-27
2016-01-8026
The distributed driving electric vehicle, uses four in-wheel motors as distributed power sources is a typical over-actuated system. Thus, this kind of vehicle has better stability potential and fault tolerance than the conventional one. In this paper, the general structure of fault-tolerance control (FTC) system based on control allocation is analyzed. And a reconfigurable driving force allocation strategy is proposed to ensure the trajectory tracking and stability when some motors’ faults occur. Both the constraints of tire force and actuators are taken into consideration. With motors’ faults treated as the constraints of actuators, FTC is integrated. For validation, the proposed allocation strategy is simulated in co-simulation environment based on Carsim and Matlab/Simulink.
Technical Paper

Research on Constant Speed Control Strategy of Water Medium Retarders for Heavy-Duty Vehicles

2019-04-02
2019-01-1304
Hydraulic retarders are extensively used in heavy-duty vehicles because of their advantages, such as their large braking torque and long continuous operating hours. They can reduce the vehicle velocity by converting the kinetic energy of a traveling vehicle to the thermal energy of the working fluid. The water medium retarder is a new type of hydraulic retarder with the characteristics of high power density and simple structure. It uses the engine's coolant as the working medium, and the heat is directly taken away by the vehicle cooling system. Therefore, the heavy-duty vehicle can achieve long-term continuous braking during the downhill process. One of the main functions of water medium retarder is driving downhill at a constant speed which determines whether the vehicle drives stably and safely. Therefore, studying the constant-speed control strategy during downhill driving is particularly important.
Journal Article

Modeling on GPS with Software-Centered Observation Errors

2016-09-14
2016-01-1903
Intelligent vehicles have gained increasing popularity in recent years as traffic safety and efficiency have become the major challenges faced by automotive industry. Vehicle positioning system, such as GPS, plays more and more important role on intelligent or autonomous driving. Intelligent vehicle technologies have been developed and tested mainly based on intensive field experiment under various driving scenarios. However, the large variation, uncertainty and complexity of the driving environment, including buildings, traffic and weather conditions have posed great challenges on test repeatability and system robustness. This paper proposes a GPS model considering software-centered observation errors. The focus of the research is on its error to reflect the real signals from GPS measurement.
Journal Article

Based on the Unscented Kalman Filter to Estimate the State of Four-Wheel-Independent Electric Vehicle with X-by-Wire

2015-09-29
2015-01-2731
As a new form of electric vehicle, Four-wheel-independent electric vehicle with X-By-Wire (XBW) inherits all the advantages of in-wheel motor drive electric vehicles. The vehicle steering system is liberated from traditional mechanical steering mechanism and forms an advanced vehicle with all- wheel independent driving, braking and steering. Compared with conventional vehicles, it has more controllable degrees of freedom. The design of the integrated vehicle dynamics control systems helps to achieve the steering, driving and braking coordinated control and improves the vehicle's handling stability. In order to solve the problem of lacking of vehicle state information in the integrated control, some methods are used to estimate the vehicle state of four-wheel-independent electric vehicles with XBW. In order to improve the estimation accuracy, unscented Kalman filter (UKF) is used to estimate the vehicle state variables in this paper.
X