Refine Your Search

Topic

Author

Search Results

Journal Article

CO2 Reduction Potential through Improved Mechanical Efficiency of the Internal Combustion Engine: Technology Survey and Cost-Benefit Analysis

2013-04-08
2013-01-1740
The need for significant reduction of fuel consumption and CO₂ emissions has become the major driver for development of new vehicle powertrains today. For the medium term, the majority of new vehicles will retain an internal combustion engine (ICE) in some form. The ICE may be the sole prime mover, part of a hybrid powertrain or even a range extender; in every case potential still exists for improvement in mechanical efficiency of the engine itself, through reduction of friction and of parasitic losses for auxiliary components. A comprehensive approach to mechanical efficiency starts with an analysis of the main contributions to engine friction, based on a measurement database of a wide range of production engines. Thus the areas with the highest potential for improvement are identified. For each area, different measures for friction reduction may be applicable with differing benefits.
Technical Paper

Modular Transmission Family for Fuel Consumption Reduction Tailored for Indian Market Needs

2021-09-22
2021-26-0049
Global warming is the driver for introduction of CO2 and fuel consumption legislation worldwide. Indian truck manufacturers are facing the introduction of Indian fuel efficiency norms. In the European Union the CO2 emission monitoring phase of the most relevant truck classes was completed in June 2020 by usage of the Vehicle Energy Consumption Calculation TOol VECTO. Indian rule makers are currently considering an adaptation of VECTO for the usage in India, too. Indian truck market has always been very cost sensitive. Introduction of Bharat Stage VI Phase I has already led to a significant cost increase for emission compliance. Therefore, it will be of vital importance to keep the additional product costs for achievement of future fuel consumption legislation as low as possible as long as the real-world operation will not be promoted by the government.
Journal Article

Definition of Gearshift Pattern: Innovative Optimization Procedures Using System Simulation

2011-04-12
2011-01-0395
Today's powertrains are becoming more and more complex due to the increasing number of gear box types requiring gearshift patterns like conventional (equipped with GSI) and automatic-manual transmissions (AT, AMT), double clutch and continuous variable transmissions (DCT, CVT). This increasing variety of gear boxes requires a higher effort for the overall optimization of the powertrain. At the same time, it is necessary to assess the impact of different powertrains and control strategies on CO₂ emissions very early in the development process. The optimization of Gear Shift Patterns (G.S.P.) has to fulfill multiple constraints in terms of objective customers' requirements, like driveability, NVH, performance, emissions and fuel consumption. For these reasons, RENAULT and AVL entered an engineering collaboration in order to develop a dedicated simulation tool: CRUISE GSP.
Journal Article

NVH Challenges and Solutions for Vehicles with Low CO2 Emission

2012-06-13
2012-01-1532
Driven by worldwide climate change, governments are introducing more stringent emission regulations with particular focus on fuel saving for CO₂ emission reduction. Downsizing and weight reduction are two of the main drivers to achieve these demanding regulations. Both aspects however might have a strong negative effect on the overall vehicle NVH behavior. Weight reduction directly influences NVH due to reduction of absorption and damping material and due to light-weight design affecting the dynamic responses of powertrain and vehicle structures. Engine downsizing however has multiple negative effects on NVH. Beside higher vibrations and speed irregularities due to lower cylinder numbers and displacements also reduction of sound quality is a critical topic that will be handled within this publication.
Journal Article

Evaluation of Valve Train Variability in Diesel Engines

2015-09-06
2015-24-2532
The continuously decreasing emission limits lead to a growing importance of exhaust aftertreatment in Diesel engines. Hence, methods for achieving a rapid catalyst light-off after engine cold start and for maintaining the catalyst temperature during low load operation will become more and more necessary. The present work evaluates several valve timing strategies concerning their ability for doing so. For this purpose, simulations as well as experimental investigations were conducted. A special focus of simulation was on pointing out the relevance of exhaust temperature, mass flow and enthalpy for these thermomanagement tasks. An increase of exhaust temperature is beneficial for both catalyst heat-up and maintaining catalyst temperature. In case of the exhaust mass flow, high values are advantageous only in case of a catalyst heat-up process, while maintaining catalyst temperature is supported by a low mass flow.
Journal Article

Immersion Quenching Simulation of Realistic Cylinder Head Geometry

2014-04-01
2014-01-0641
In this paper, a recently improved Computational Fluid Dynamics (CFD) methodology for virtual prototyping of the heat treatment of cast aluminum parts, above most of cylinder heads of internal combustion engines (ICE), is presented. The comparison between measurement data and numerical results has been carried out to simulate the real time immersion quenching cooling process of realistic cylinder head structure using the commercial CFD code AVL FIRE®. The Eulerian multi-fluid modeling approach is used to handle the boiling flow and the heat transfer between the heated structure and the sub-cooled liquid. While for the fluid region governing equations are solved for each phase separately, only the energy equation is solved in the solid region. Heat transfer coefficients depend on the boiling regimes which are separated by the Leidenfrost temperature.
Technical Paper

The 2-Step VCR Conrod System - Modular System for High Efficiency and Reduced CO2

2017-03-28
2017-01-0634
In order to achieve future CO2 targets - in particular under real driving conditions - different powertrain technologies will have to be introduced. Beside the increasing electrification of the powertrain, it will be essential to utilize the full potential of the internal combustion engine. In addition to further optimization of the combustion processes and the reduction of mechanical losses in the thermal- and energetic systems, the introduction of Variable Compression Ratio (VCR) is probably the measure with the highest potential for fuel economy improvement. VCR systems are expected to be introduced to a considerable number of next generation turbocharged Spark Ignited (SI) engines in certain vehicle classes. The basic principle of the AVL VCR system described in this paper is a 2-stage variation of the conrod length and thus the Compression Ratio (CR).
Technical Paper

Development of New I3 1.0L Turbocharged DI Gasoline Engine

2017-10-08
2017-01-2424
In recent years, more attentions have been paid to stringent legislations on fuel consumption and emissions. Turbocharged downsized gasoline direct injection (DI) engines are playing an increasing important role in OEM’s powertrain strategies and engine product portfolio. Dongfeng Motor (DFM) has developed a new 1.0 liter 3-cylinder Turbocharged gasoline DI (TGDI) engine (hereinafter referred to as C10TD) to meet the requirements of China 4th stage fuel consumption regulations and the China 6 emission standards. In this paper, the concept of the C10TD engine is explained to meet the powerful performance (torque 190Nm/1500-4500rpm and power 95kW/5500rpm), excellent part-load BSFC and NVH targets to ensure the drivers could enjoy the powerful output in quiet and comfortable environment without concerns about the fuel cost and pollution.
Technical Paper

Novel Shift Control without Clutch Slip in Hybrid Transmissions

2017-03-28
2017-01-1110
With the introduction of new regulations on emissions, fuel efficiency, driving cycles, etc. challenges for the powertrains are significantly increasing. In order to fulfil these regulations, hybrid-electric powertrains are an unquestioned option for short and long-term solutions. Hybridization however, is not only fulfilling these challenging efficiency or emission targets, but also allows numerous new possibilities on control strategies of different powertrain elements as well as new approaches of designing them. A good example is transmissions where, hybridization allows a new transmission type called Dedicated Hybrid Transmission (DHT), which enables to use novel control strategies bringing improved performance, driveability, durability and NVH behavior. This paper focuses on the novel shift strategy where friction clutches do not have to slip.
Technical Paper

Crank-Angle Resolved Modeling of Fuel Injection, Combustion and Emission Formation for Engine Optimization and Calibration on Real-Time Systems

2016-04-05
2016-01-0558
The present work introduces an innovative mechanistically based 0D spray model which is coupled to a combustion model on the basis of an advanced mixture controlled combustion approach. The model calculates the rate of heat release based on the injection rate profile and the in-cylinder state. The air/fuel distribution in the spray is predicted based on momentum conservation by applying first principles. On the basis of the 2-zone cylinder framework, NOx emissions are calculated by the Zeldovich mechanism. The combustion and emission models are calibrated and validated with a series of dedicated test bed data specifically revealing its capability of describing the impact of variations of EGR, injection timing, and injection pressure. A model based optimization is carried out, aiming at an optimum trade-off between fuel consumption and engine-out emissions. The findings serve to estimate an economic optimum point in the NOx/BSFC trade-off.
Technical Paper

Influence of Different Oil Properties on Low-Speed Pre-Ignition in Turbocharged Direct Injection Spark Ignition Engines

2016-04-05
2016-01-0718
In recent years concern has arisen over a new combustion anomaly, which was not commonly associated with naturally aspirated engines. This phenomenon referred to as Low-Speed Pre-Ignition (LSPI), which often leads to potentially damaging peak cylinder pressures, is the most important factor limiting further downsizing and the potential CO2 benefits that it could bring. Previous studies have identified several potential triggers for pre-ignition where engine oil seems to have an important influence. Many studies [1], [2] have reported that detached oil droplets from the piston crevice volume lead to auto-ignition prior to spark ignition. Furthermore, wall wetting and subsequently oil dilution [3] and changes in the oil properties by impinging fuel on the cylinder wall seem to have a significant influence in terms of accumulation and detachment of oil-fuel droplets in the combustion chamber.
Technical Paper

Challenges and Solutions for Range Extenders - From Concept Considerations to Practical Experiences

2011-06-09
2011-37-0019
For a broad acceptance of electric vehicles, the trade-off between all electric range and battery cost respectively weight represents the most important challenge. The all electric range obtained under real world conditions most often deviates significantly from the nominal value which is measured under idealized conditions. Under extreme conditions - slow traffic and demanding requirements for cabin heating or cooling - the electrical range might become less a question of spatial distance but even more of total operation time. Whereas with conventional powertrain, high flexibility of the total driving range can be obtained without sacrificing cost, with a pure battery vehicle this results in extreme high cost and weight of the energy storage. Therefore the difference between the typical daily driving range (e.g. in Germany 80-90% is below 50 km) and the minimum total range requested by most customers for acceptance of battery vehicles (200- 250 km), becomes essential.
Technical Paper

Numerical and Experimental Analysis of Mixture Formation and Performance in a Direct Injection CNG Engine

2012-04-16
2012-01-0401
This paper presents the results of part of the research activity carried out by the Politecnico di Torino and AVL List GmbH as part of the European Community InGAS Collaborative Project. The work was aimed at developing a combustion system for a mono-fuel turbocharged CNG engine, with specific focus on performance, fuel economy and emissions. A numerical and experimental analysis of the jet development and mixture formation in an optically accessible, single cylinder engine is presented in the paper. The experimental investigations were performed at the AVL laboratories by means of the planar laser-induced fluorescence technique, and revealed a cycle-to-cycle jet shape variability that depended, amongst others, on the injector characteristics and in-cylinder backpressure. Moreover, the mixing mechanism had to be optimized over a wide range of operating conditions, under both stratified lean and homogeneous stoichiometric modes.
Technical Paper

Piston Clearance Optimization using Thermo-elasto Hydrodynamic Simulation to Reduce Piston Slap Excitation and Friction Loss

2012-06-13
2012-01-1530
The reduction of acoustic excitation due to piston slap as well as friction loss power and seizure are main issues when simulating the oil film lubricated piston - cylinder contacts of internal combustion engines. For a correct representation of the contact conditions between a piston skirt and a cylinder liner surface both the dynamics of the contacting flexible bodies, the shape of the contacting surfaces, the amount of available oil and the properties of the lubricant itself play important roles. Besides an appropriate representation of the hydrodynamic load carrying capacity using an averaged Reynolds equation with laminar flow conditions, the simulation has to use an appropriate asperity model to consider the mixed lubrication condition. The lubricant properties are in particular influenced by its thermal conditions.
Technical Paper

A Comprehensive Study on Different System Level Engine Simulation Models

2013-04-08
2013-01-1116
Engine simulation can be performed using model approaches of different depths in capturing physical effects. The present paper presents a comprehensive comparison study on seven different engine models. The models range from transient 1D cycle resolved approaches to steady-state non-dimensional maps. The models are discussed in the light of key features, amount and kind of required input data, model calibration effort and predictability and application areas. The computational performance of the different models and their capabilities to capture different transient effects is investigated together with a vehicle model under real-life driving conditions. In the trade-off field of model predictability and computational performance an innovative approach on crank-angle resolved cylinder modeling turned out to be most beneficial.
Technical Paper

The Impact of Emissions and Fuel Economy Requirements on Fuel Injection System and Noise of HD Diesel Engines

1998-02-01
980176
Despite the increasingly stringent emissions legislation, users and owners of commercial diesel vehicles are continually demanding that each new engine generation is more economical than the previous one. This is especially important for commercial vehicles where the majority of engines are in the 1-2ltr./cyl. class. The demands are being reflected in new engine designs with lower friction and improved structural stiffness, together with fuel systems having increased pressure capability, higher spill rates, injection rate shaping and advanced control features. These fuel system requirements have led to a variety of new fuel injection systems and in the search for increased injection pressure these fuel systems have placed greater demands on the engine, especially in areas such as the cylinder head and fuel system drive, sometimes with adverse effects on the combustion and fuel injection system induced mechanical noise.
Technical Paper

The Turbocharged GDI Engine: Boosted Synergies for High Fuel Economy Plus Ultra-low Emission

2006-04-03
2006-01-1266
Recent turbocharged Gasoline engines based on MPFI offer excellent power output and high nominal torque, however, also some disadvantages. The most significant restrictions of TC-engines - like poor fuel economy, limited emission capability and delayed transient response (turbo lag) - can be improved dramatically by a refined GDI application. The synergy effects of GDI, which are also partly used at naturally aspirated engines, are even more significant with turbocharging. The low emission capability of GDI enables turbocharged SULEV concepts within moderate cost of the emission / aftertreatment system. The outstanding low-end-torque, the high specific power and torque output of refined GDI-Turbo concepts enable high fuel efficiency combined with excellent fun to drive. Thus such GDI-Turbo concepts will become the most attractive technology to fulfill highest fuel economy-, emission- and performance requirements simultaneously.
Technical Paper

The Dual Mode VCS Conrod System – Functional Development and Oil Investigations

2018-04-03
2018-01-0878
Variable Compression Systems (VCS) for Internal Combustion Engines (ICE) will become increasingly more important in the future to meet stringent global fuel economy and CO2 standards. A Dual Mode VCS is in development at AVL and the basic functionality and potential were described in a technical paper which was presented at the SAE WCX 2017 [1]. The system is based on a hydraulically switched and locked conrod with telescopic shank. The AVL Dual Mode VCS was designed and virtually optimized with CAE simulation methods for the boundary conditions of a typical 2.0 L Inline (I) 4 Turbocharged Gasoline Direct Injection (TGDI) engine representing state-of-the-art gasoline engine technology for the next years to come.
Technical Paper

Fatigue Strength Effect of Thread Forming Process in Cast Aluminum

2006-04-03
2006-01-0780
Two thread forming processes, rolling and cutting, were studied for their effects on fatigue in cast aluminum 319-T7. Material was excised from cylinder blocks and tested in rotating-bending fatigue in the form of unnotched and notched specimens. The notched specimens were prepared by either rolling or cutting to replicate threads in production-intent parts. Cut threads exhibited conventional notch behavior for notch sensitive materials. In contrast, plastic deformation induced by rolling created residual compressive stresses in the notch root and significantly improved fatigue strength to the point that most of the rolled specimens broke outside the notch. Fractographic and metallographic investigation showed that cracks at the root of rolled notches were deflected upon initiation. This lengthened their incubation period, which effectively increased fatigue resistance.
Technical Paper

Simulation of Piston Ring Dynamics and Their Effect on Oil Consumption

2000-03-06
2000-01-0919
The sealing effect of piston rings in reciprocating engines have a major impact on blow-by and lube oil consumption (LOC). The sealing is achieved by the gas forces acting on the top and back side of the rings. In addition, the load in the radial direction is increased by the initial ring tension. Inertia forces arising from the oscillating vertical stroke and shear forces due to the secondary piston movement influence this sealing effect by a reduction in contact pressure. Numerical simulation of the piston and ring dynamics solves this non-linear problem and predicts the interaction between piston secondary motion, axial ring motion, and 2nd land pressure. This paper describes the modeling of the cylinder kit dynamics of a six-cylinder truck diesel engine for several operating conditions and ring modifications. The influence of boundary conditions and adjustment parameters on piston ring motion and gas penetration was investigated.
X