Refine Your Search

Topic

Author

Search Results

Journal Article

Integrated 1D/2D/3D Simulation of Fuel Injection and Nozzle Cavitation

2013-09-08
2013-24-0006
To promote advanced combustion strategies complying with stringent emission regulations of CI engines, computational models have to accurately predict the injector inner flow and cavitation development in the nozzle. This paper describes a coupled 1D/2D/3D modeling technique for the simulation of fuel flow and nozzle cavitation in diesel injection systems. The new technique comprises 1D fuel flow, 2D multi-body dynamics and 3D modeling of nozzle inner flow using a multi-fluid method. The 1D/2D model of the common rail injector is created with AVL software Boost-Hydsim. The computational mesh including the nozzle sac with spray holes is generated with AVL meshing tool Fame. 3D multi-phase calculations are performed with AVL software FIRE. The co-simulation procedure is controlled by Boost-Hydsim. Initially Hydsim performs a standalone 1D simulation until the needle lift reaches a prescribed tolerance (typically 2 to 5 μm).
Technical Paper

Modular Transmission Family for Fuel Consumption Reduction Tailored for Indian Market Needs

2021-09-22
2021-26-0049
Global warming is the driver for introduction of CO2 and fuel consumption legislation worldwide. Indian truck manufacturers are facing the introduction of Indian fuel efficiency norms. In the European Union the CO2 emission monitoring phase of the most relevant truck classes was completed in June 2020 by usage of the Vehicle Energy Consumption Calculation TOol VECTO. Indian rule makers are currently considering an adaptation of VECTO for the usage in India, too. Indian truck market has always been very cost sensitive. Introduction of Bharat Stage VI Phase I has already led to a significant cost increase for emission compliance. Therefore, it will be of vital importance to keep the additional product costs for achievement of future fuel consumption legislation as low as possible as long as the real-world operation will not be promoted by the government.
Technical Paper

Evaluation of Flow Paths due to Leakages of Flammable Liquids by the SPH Method: Application to Real Engines

2020-04-14
2020-01-1111
One of the most important safety issues for automotive engineering is to avoid any fire due to the ignition of flammable liquids, which may result from leaks. Fire risk is a combination of hot temperature, fast vaporisation and accumulation of vapor in a cavity. In IC engines, potentially flammable liquids are fuel and oil. To guarantee safety, flammable liquids must not come into contact with hot parts of the engine. Consequently, shields are designed to guide the flow path of possible leakages and to take any flammable liquid out of the hot areas. Simulation is a great help to optimize the shape of the shield by investigating a large number of possible leakages rapidly. Recent breakthroughs in numerical methods make it possible to apply simulations to industrial design concepts. The employed approach is based on the Lagrangian Smoothed Particle Hydrodynamics (SPH) method.
Journal Article

Development of a High Performance Natural Gas Engine with Direct Gas Injection and Variable Valve Actuation

2017-09-04
2017-24-0152
Natural gas is a promising alternative fuel for internal combustion engine application due to its low carbon content and high knock resistance. Performance of natural gas engines is further improved if direct injection, high turbocharger boost level, and variable valve actuation (VVA) are adopted. Also, relevant efficiency benefits can be obtained through downsizing. However, mixture quality resulting from direct gas injection has proven to be problematic. This work aims at developing a mono-fuel small-displacement turbocharged compressed natural gas engine with side-mounted direct injector and advanced VVA system. An injector configuration was designed in order to enhance the overall engine tumble and thus overcome low penetration.
Journal Article

A Coupled 1D-multiD Nonlinear Simulation of I.C. Engine Silencers with Perforates and Sound-Absorbing Material

2009-04-20
2009-01-0305
Nowadays a great attention is paid to the level and quality of noise radiated from the tailpipe end of intake and exhaust systems, to control the gas dynamic noise emitted by the engine as well as the characteristics of the cabin interior sound. The muffler geometry can be optimized consequently, to attenuate or remark certain spectral components of the engine noise, according to the result expected. Evidently the design of complex silencing systems is a time-consuming operation, which must be carried out by means of concurrent experimental measurements and numerical simulations. In particular, 1D and multiD linear/non-linear simulation codes can be applied to predict the silencer behavior in the time and frequency domain. This paper describes the development of a 1D-multiD integrated approach for the simulation of complex muffler configurations such as reverse chambers with inlet and outlet pipe extensions and perforated silencers with the addition of sound absorbing material.
Journal Article

Test Rig for Characterization of Automotive Suspension Systems

2008-04-14
2008-01-0692
A test rig (named RuotaVia) is presented for the in-door testing of road vehicle suspension systems. It is basically a drum (ϕ 2.6 m) providing a running surface for testing the dynamic performance of a single tire or suspension system (corner). The suspension system is instrumented for the measurement of the forces and the moments acting at each joint connecting the suspension to the car body. A new 6 axis load cell was designed and manufactured for this purpose. The accelerations in various locations of the system (wheel carrier, suspension arms, …) and the wheel centre displacements in the longitudinal and vertical directions are monitored. The effect of the dynamic interaction between the test rig and the suspension system is discussed in the paper. The direct measurement of the forces and moments at the suspension-chassis joints is still an effective way for understanding the vibration and harshness (VH) suspension performances.
Journal Article

Experimental Characterization of the Lateral Response of a Tire under Hydroplaning Condition

2012-04-16
2012-01-0769
Hydroplaning represents a threat for riding safety since a wedge of water generated at the tire-road interface can lift tires from the ground thus preventing the development of tangential contact forces. Under this condition directionality and stability of the vehicle can be seriously compromised. The paper aims at characterizing the tire lateral response while approaching the hydroplaning speed: several experimental tests were carried out on a special test track covered with a 8-mm high water layer using a vehicle equipped with a dynamometric hub on the front left wheel. A series of swept sine steer maneuvers were performed increasing the vehicle speed in order to reach a full hydroplaning condition. Variations of tire cornering stiffness and relaxation length were investigated while the vehicle approaches the hydroplaning speed. Experimental tests stated that a residual capability of generating lateral forces is still present also close to the full hydroplaning condition.
Technical Paper

New Kinematic Design Methodology and Dynamic Simulation of Continuously Variable Valve Lift (CVVL) System

2010-04-12
2010-01-1202
Mechanical variable valve systems are being increasingly used for modern combustion engines. It is typical for such systems that the cam and valve are connected via intermediate levers. Different maximum valve lifts and duration can be achieved with the same cam profile. The intermediate levers increase the system inertia and reduce the overall stiffness. Such systems offer more flexibility, but it is more complex to create optimal design compared to the conventional systems. In this paper a new kinematic design methodology for a CVVL (Continuously Variable Valve Lift) system is presented. Additionally, dynamic analysis of the valve train system is performed. The investigated valve train is completely developed and patented by OEM. The main characteristic of the CVVL system is a set of intermediate levers between the cam and the finger follower like ( 1 , 2 ). One cam drives two intake valves over a set of levers.
Technical Paper

Design and Construction of a Test Rig for Assessing Tyre Characteristics at Rollover

2002-07-09
2002-01-2077
The paper presents a new test rig (named RuotaVia) composed basically by a drum (2,6 m diameter), providing a running contact surface for vehicle wheels. A number of measurements on either full vehicles or vehicle sub-systems (single suspension system or single tyre) can be performed. Tire characteristics influencing rollover can be assessed. The steady-state maximum loads are as follows: Radial: 100kN, tangential: 100kN, lateral (axial with respect to the drum): 100kN. The superstructure carrying a measuring hub can excite the wheel under test up to 20 Hz in lateral and vertical directions. The steer angle range is ± 25 deg, the camber range is ± 80 deg. The minimum eigenfrequency of the drum is higher than 90 Hz and its maximum tangential speed is 440 km/h.
Technical Paper

Numerical Estimation of Asymmetry of In-Cylinder Flow in a Light Duty Direct Injection Engine with Re-Entrant Piston Bowl

2017-10-08
2017-01-2209
Partially premixed combustion (PPC) can be applied to decrease emissions and increase fuel efficiency in direct injection, compression ignition (DICI) combustion engines. PPC is strongly influenced by the mixing of fuel and oxidizer, which for a given fuel is controlled mainly by (a) the fuel injection, (b) the in-cylinder flow, and (c) the geometry and dynamics of the engine. As the injection timings can vary over a wide range in PPC combustion, detailed knowledge of the in-cylinder flow over the whole intake and compression strokes can improve our understanding of PPC combustion. In computational fluid dynamics (CFD) the in-cylinder flow is sometimes simplified and modeled as a solid-body rotation profile at some time prior to injection to produce a realistic flow field at the moment of injection. In real engines, the in-cylinder flow motion is governed by the intake manifold, the valve motion, and the engine geometry.
Technical Paper

Novel Shift Control without Clutch Slip in Hybrid Transmissions

2017-03-28
2017-01-1110
With the introduction of new regulations on emissions, fuel efficiency, driving cycles, etc. challenges for the powertrains are significantly increasing. In order to fulfil these regulations, hybrid-electric powertrains are an unquestioned option for short and long-term solutions. Hybridization however, is not only fulfilling these challenging efficiency or emission targets, but also allows numerous new possibilities on control strategies of different powertrain elements as well as new approaches of designing them. A good example is transmissions where, hybridization allows a new transmission type called Dedicated Hybrid Transmission (DHT), which enables to use novel control strategies bringing improved performance, driveability, durability and NVH behavior. This paper focuses on the novel shift strategy where friction clutches do not have to slip.
Technical Paper

Gear Whine Noise Investigation of a Bus Rear Axle - Todays Possibilities and Outlook

2017-06-05
2017-01-1820
This paper presents a simulation environment and methodology for noise and vibration analyses of a driven rear axle in a bus application, with particular focus on medium to high frequency range (400 Hz to 3 kHz). The workflow demonstrates structure borne noise and sound radiation analyses. The fully flexible Multi-Body Dynamics (MBD) model - serving to cover the actual mechanical excitation mechanisms and the structural domain - includes geometrical contacts of hypoid gear in the central gear and planetary gear integrated at hubs, considering non-linear meshing stiffness. Contribution of aforementioned gear stages, as well as the propeller shaft universal joint at the pinion axle, on overall axle noise levels is investigated by means of sensitivity analysis. Based on the surface velocities computed at the vibrating axle-housing structure the Wave Based Technique (WBT) is employed to solve the airborne noise problem and predict the radiated sound.
Technical Paper

Cylinder- and Cycle Resolved Particle Formation Evaluation to Support GDI Engine Development for Euro 6 Targets

2011-09-11
2011-24-0206
Combustion of premixed stoichiometric charge is free of soot particle formation. Consequently, the development of direct injection (DI) spark ignition (SI) engines aims at providing premixed charge to avoid or minimize soot formation in order to meet particle emissions targets. Engine development methods not only need precise engine-out particle measurement instrumentation but also sensors and measurement techniques which enable identification of in-cylinder soot formation sources under all relevant engine test conditions. Such identification is made possible by recording flame radiation signals and with analysis of such signals for premixed and diffusion flame signatures. This paper presents measurement techniques and analysis methods under normal engine and vehicle test procedures to minimize sooting combustion modes in transient engine operation.
Technical Paper

Nozzle Flow and Cavitation Modeling with Coupled 1D-3D AVL Software Tools

2011-09-11
2011-24-0006
The paper is devoted to the coupled 1D-3D modeling technology of injector flow and cavitation in diesel injections systems. The technology is based on the 1D simulation of the injector with the AVL software BOOST-HYDSIM and 3D modeling of the nozzle flow with AVL FIRE. The nozzle mesh with spray holes and certain part of the nozzle chamber is created with the FIRE preprocessor. The border between the 1D and 3D simulation regions can be chosen inside the nozzle chamber at any position along the needle shaft. Actual coupling version of both software tools considers only one-dimensional (longitudinal) needle motion. Forthcoming version already includes the two-dimensional motion of the needle. Furthermore, special models for the needle tip contact with the nozzle seat and needle guide contact with the nozzle wall are developed in HYDSIM. The co-simulation technology is applied for different common rail injectors in several projects.
Technical Paper

Combined Experimental and Numerical Investigation of the ECN Spray G under Different Engine-Like Conditions

2018-04-03
2018-01-0281
A detailed understanding of Gasoline Direct Injection (GDI) techniques applied to spark-ignition (SI) engines is necessary as they allow for many technical advantages such as increased power output, higher fuel efficiency and better cold start performances. Within this context, the extensive validation of multi-dimensional models against experimental data is a fundamental task in order to achieve an accurate reproduction of the physical phenomena characterizing the injected fuel spray. In this work, simulations of different Engine Combustion Network (ECN) Spray G conditions were performed with the Lib-ICE code, which is based on the open source OpenFOAM technology, by using a RANS Eulerian-Lagrangian approach to model the ambient gas-fuel spray interaction.
Technical Paper

Concepts for Mechanical Abuse Testing of High-Voltage Batteries

2012-04-16
2012-01-0124
Currently lithium-batteries are the most promising electrical-energy storage technology in fully-electric and hybrid vehicles. A crashworthy battery-design is among the numerous challenges development of electric-vehicles has to face. Besides of safe normal operation, the battery-design shall provide marginal threat to human health and environment in case of mechanical damage. Numerous mechanical abuse-tests were performed to identify load limits and the battery's response to damage. Cost-efficient testing is provided by taking into account that the battery-system's response to abuse might already be observed at a lower integration-level, not requiring testing of the entire pack. The most feasible tests and configurations were compiled and discussed. Adaptions of and additions to existing requirements and test-procedures as defined in standards are pointed out. Critical conditions that can occur during and after testing set new requirements to labs and test-rigs.
Technical Paper

LES Simulation of Direct Injection SI-Engine In-Cylinder Flow

2012-04-16
2012-01-0138
The present paper deals with the application of the LES approach to in-cylinder flow modeling. The main target is to study cycle-to-cycle variability (CCV) using 3D-CFD simulation. The engine model is based on a spark-ignited single-cylinder research engine. The results presented in this paper cover the motored regime aiming at analysis of the cycle-resolved local flow properties at the spark plug close to firing top dead center. The results presented in this paper suggest that the LES approach adopted in the present study is working well and that it predicts CCV and that the qualitative trends are in-line with established knowledge of internal combustion engine (ICE) in-cylinder flow. The results are evaluated from a statistical point of view based on calculations of many consecutive cycles (at least 10).
Technical Paper

Modeling of Pressure Wave Reflection from Open-Ends in I.C.E. Duct Systems

2010-04-12
2010-01-1051
In the most elementary treatment of plane-wave reflection at the open end of a duct system, it is often assumed that the ends are pressure nodes. This implies that pressure is assumed as a constant at the open end termination and that steady flow boundary condition is supposed as instantaneously established. While this simplifying assumption seems reasonable, it does not consider any radiation of acoustic energy from the duct into the surrounding free space; hence, an error in the estimation of the effects of the flow on the acoustical response of an open-end duct occurs. If radiation is accounted, a complicated three-dimensional wave pattern near the duct end is established, which tends to readjust the exit pressure to its steady-flow level. This adjustment process is continually modified by further incident waves, so that the effective instantaneous boundary conditions which determine the reflected waves depend on the flow history.
Technical Paper

The Turbocharged GDI Engine: Boosted Synergies for High Fuel Economy Plus Ultra-low Emission

2006-04-03
2006-01-1266
Recent turbocharged Gasoline engines based on MPFI offer excellent power output and high nominal torque, however, also some disadvantages. The most significant restrictions of TC-engines - like poor fuel economy, limited emission capability and delayed transient response (turbo lag) - can be improved dramatically by a refined GDI application. The synergy effects of GDI, which are also partly used at naturally aspirated engines, are even more significant with turbocharging. The low emission capability of GDI enables turbocharged SULEV concepts within moderate cost of the emission / aftertreatment system. The outstanding low-end-torque, the high specific power and torque output of refined GDI-Turbo concepts enable high fuel efficiency combined with excellent fun to drive. Thus such GDI-Turbo concepts will become the most attractive technology to fulfill highest fuel economy-, emission- and performance requirements simultaneously.
Technical Paper

Automated Test Case Generation and Virtual Assessment Framework for UN Regulation on Automated Lane Keeping Systems

2021-04-06
2021-01-0870
Validation of highly automated or autonomous vehicles is nowadays still a major challenge for the automotive industry. Furthermore, the homologation of ADAS/AD vehicles according to global regulations is getting more essential for their safe development and deployment around the world. In order to assure that the autonomous driving function is able to cope with the huge number of possible situations during operation, comprehensive testing of the functions is required. However, conventional testing approaches such as driving distance-based validation approach in the real world, can be time- and cost-consuming. Therefore, a scenario-based virtual validation and testing method is considered to be a proper solution. In this paper, we propose a virtual assessment framework using a fully automated test case generation method. This framework is embedded into the continuous development and validation process.
X